25,176 research outputs found

    Investigating the noise residuals around the gravitational wave event GW150914

    Full text link
    We use the Pearson cross-correlation statistic proposed by Liu and Jackson, and employed by Creswell et al., to look for statistically significant correlations between the LIGO Hanford and Livingston detectors at the time of the binary black hole merger GW150914. We compute this statistic for the calibrated strain data released by LIGO, using both the residuals provided by LIGO and using our own subtraction of a maximum-likelihood waveform that is constructed to model binary black hole mergers in general relativity. To assign a significance to the values obtained, we calculate the cross-correlation of both simulated Gaussian noise and data from the LIGO detectors at times during which no detection of gravitational waves has been claimed. We find that after subtracting the maximum likelihood waveform there are no statistically significant correlations between the residuals of the two detectors at the time of GW150914.Comment: 14 pages, 7 figures. Minor text and figure changes in final v3. Notebooks for generating the results are available at https://github.com/gwastro/gw150914_investigatio

    Joshua Thomas Bell, Queensland and the Darling Downs 1889-1911

    Get PDF

    Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral

    Get PDF
    The INSPIRAL program is the LIGO Scientific Collaboration's computational engine for the search for gravitational waves from binary neutron stars and sub-solar mass black holes. We describe how this program, which makes use of the FINDCHIRP algorithm (discussed in a companion paper), is integrated into a sophisticated data analysis pipeline that was used in the search for low-mass binary inspirals in data taken during the second LIGO science run.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravity for the special issue of the GWDAW9 Proceeding

    Quantum picturalism for topological cluster-state computing

    Full text link
    Topological quantum computing is a way of allowing precise quantum computations to run on noisy and imperfect hardware. One implementation uses surface codes created by forming defects in a highly-entangled cluster state. Such a method of computing is a leading candidate for large-scale quantum computing. However, there has been a lack of sufficiently powerful high-level languages to describe computing in this form without resorting to single-qubit operations, which quickly become prohibitively complex as the system size increases. In this paper we apply the category-theoretic work of Abramsky and Coecke to the topological cluster-state model of quantum computing to give a high-level graphical language that enables direct translation between quantum processes and physical patterns of measurement in a computer - a "compiler language". We give the equivalence between the graphical and topological information flows, and show the applicable rewrite algebra for this computing model. We show that this gives us a native graphical language for the design and analysis of topological quantum algorithms, and finish by discussing the possibilities for automating this process on a large scale.Comment: 18 pages, 21 figures. Published in New J. Phys. special issue on topological quantum computin

    Integrating TV/digital data spectrograph system

    Get PDF
    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis

    A Darling Downs Quartet : four minor Queensland politicians: George Clark, James Morgan,William Allan and Francis Kates

    Get PDF

    Limits on the Boron Isotopic Ratio in HD 76932

    Full text link
    Data in the 2090 A B region of HD 76932 have been obtained at high S/N using the HST GHRS echelle at a resolution of 90,000. This wavelength region has been previously identified as a likely candidate for observing the B11/B10 isotopic splitting. The observations do not match a calculated line profile extremely well at any abundance for any isotopic ratio. If the B abundance previously determined from observations at 2500 A is assumed, the calculated line profile is too weak, indicating a possible blending line. Assuming that the absorption at 2090 A is entirely due to boron, the best-fit total B abundance is higher than but consistent with that obtained at 2500 A, and the best-fit isotopic ratio (B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due to B and there is an unknown blend, the best-fit isotopic ratio may be closer to 1:1. Future observations of a similar metal-poor star known to have unusually low B should allow us to distinguish between these two possibilities. The constraints that can be placed on the isotopic ratio based on comparisons with similar observations of HD 102870 and HD 61421 (Procyon) are also discussed.Comment: Accepted for Nov 1998 Ap

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    The Giant Flare of 1998 August 27 from SGR 1900+14: II. Radiative Mechanism and Physical Constraints on the Source

    Full text link
    (ABBREVIATED) The extraordinary 1998 August 27 giant flare places strong constraints on the physical properties of its source, SGR 1900+14. We make detailed comparisons of the published data with the magnetar model. The giant flare evolved through three stages, whose radiative mechanisms we address in turn. A triggering mechanism is proposed, whereby a helical distortion of the core magnetic field induces large-scale fracturing in the crust and a twisting deformation of the crust and exterior magnetic field. The envelope of the pulsating tail of the August 27 flare can be accurately fit, after ~40 s, by the contracting surface of a relativistically hot, but inhomogeneous, trapped fireball. We quantify the effects of direct neutrino-pair emission, thereby deducing a lower bound ~ 10^{32} G-cm^3 to the magnetic moment of the confining field. The radiative flux during the intermediate ~40 s of the burst appears to exceed the trapped fireball fit. The spectrum and lightcurve of this smooth tail are consistent with heating in an extended pair corona, possibly powered by continuing seismic activity in the star. We consider in detail the critical luminosity, below which a stable balance can be maintained between heating and radiative cooling in a confined, magnetized pair plasma; but above which the confined plasma runs away to local thermodynamic equilibrium. In the later pulsating tail, the best fit temperature equilibrates at a value which agrees well with the regulating effect of photon splitting. The remarkable four-peaked substructure within each 5.16-s pulse provides strong evidence for the presence of higher magnetic multipoles in SGR 1900+14. The corresponding collimation of the X-ray flux is related to radiative transport in a super-QED magnetic field.Comment: 11 July 2001, accepted for publication in the Astrophysical Journa
    corecore