127 research outputs found

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Dirty and 40 days in the wilderness: Eliciting childbirth and postnatal cultural practices and beliefs in Nepal.

    Get PDF
    Background: Pregnancy and childbirth are socio-cultural events that carry varying meanings across different societies and cultures. These are often translated into social expectations of what a particular society expects women to do (or not to do) during pregnancy, birth and/or the postnatal period. This paper reports a study exploring beliefs around childbirth in Nepal, a low-income country with a largely Hindu population. The paper then sets these findings in the context of the wider global literature around issues such as periods where women are viewed as polluted (or dirty even) after childbirth. Methods: A qualitative study comprising five in-depth face-to-face interviews and 14 focus group discussions with mainly women, but also men and health service providers. The qualitative findings in Nepal were compared and contrasted with the literature on practices and cultural beliefs related to the pregnancy and childbirth period across the globe and at different times in history. Results: The themes that emerged from the analysis included: (a) cord cutting & placenta rituals; (b) rest & seclusion; (c) purification, naming & weaning ceremonies and (d) nutrition and breastfeeding. Physiological changes in mother and baby may underpin the various beliefs, ritual and practices in the postnatal period. These practices often mean women do not access postnatal health services. Conclusions: The cultural practices, taboos and beliefs during pregnancy and around childbirth found in Nepal largely resonate with those reported across the globe. This paper stresses that local people’s beliefs and practices offer both opportunities and barriers to health service providers. Maternity care providers need to be aware of local values, beliefs and traditions to anticipate and meet the needs of women, gain their trust and work with them

    Towards an understanding of the information and support needs of surgical adolescent idiopathic scoliosis patients: a qualitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Informed decision making for adolescents and families considering surgery for scoliosis requires essential information, including expected outcomes with or without treatment and the associated risks and benefits of treatment. Ideally families should also receive support in response to their individual concerns. The aim of this study was to identify health-specific needs for online information and support for patients with adolescent idiopathic scoliosis who have had or anticipate having spinal surgery.</p> <p>Methods</p> <p>Focus group methodology was chosen as the primary method of data collection to encourage shared understandings, as well as permit expression of specific, individual views. Participants were considered eligible to participate if they had either experienced or were anticipating surgery for adolescent idiopathic scoliosis within 12 months, were between the ages of 10 and 18 years of age, and were English-speaking.</p> <p>Results</p> <p>Two focus groups consisting of 8 adolescents (1 male, 7 female) and subsequent individual interviews with 3 adolescents (1 male, 2 female) yielded a range of participant concerns, in order of prominence: (1) recovery at home; (2) recovery in hospital; (3) post-surgical appearance; (4) emotional impact of surgery and coping; (5) intrusion of surgery and recovery of daily activities; (6) impact of surgery on school, peer relationships and other social interactions; (7) decision-making about surgery; (8) being in the operating room and; (9) future worries.</p> <p>Conclusion</p> <p>In conclusion, adolescents welcomed the possibility of an accessible, youth-focused website with comprehensive and accurate information that would include the opportunity for health professional-moderated, online peer support.</p

    Down-Regulation of DNA Mismatch Repair Enhances Initiation and Growth of Neuroblastoma and Brain Tumour Multicellular Spheroids

    Get PDF
    Multicellular tumour spheroid (MCTS) cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR). This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA) against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci

    A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements

    Get PDF
    Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur

    Life Cycle Management of Infrastructures

    Get PDF
    By definition, life cycle management (LCM) is a framework “of concepts, techniques, and procedures to address environmental, economic, technological, and social aspects of products and organizations in order to achieve continuous ‘sustainable’ improvement from a life cycle perspective” (Hunkeler et al.\ua02001). Thus, LCM theoretically integrates all sustainability dimensions, and strives to provide a holistic perspective. It also assists in the efficient and effective use of constrained natural and financial resources to reduce negative impacts on society (Sonnemann and Leeuw\ua02006; Adibi et al.\ua02015). The LCM of infrastructures is the adaptation of product life cycle management (PLM) as techniques to the design, construction, and management of infrastructures. Infrastructure life cycle management requires accurate and extensive information that might be generated through different kinds of intelligent and connected information workflows, such as building information modeling (BIM)

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Disorders of intestinal rotation and fixation (“malrotation”)

    Full text link
    Malrotation with volvulus is one of the true surgical emergencies of childhood. Prompt radiological diagnosis is often paramount to achieving a good outcome. An understanding of the normal and anomalous development of the midgut provides a basis for understanding the pathophysiology and the clinical presentation of malrotation and malrotation complicated by volvulus. In this essay, the radiologic findings of malrotation and volvulus are reviewed and illustrated with particular attention to the child with equivocal imaging findings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46708/1/247_2004_Article_1279.pd

    Mapping the human genetic architecture of COVID-19

    Get PDF
    Matters Arising to this article was published on 03 August 2022, available online at: https://doi.org/10.1038/s41586-022-04826-7 . A second Matters Arising to this article was published on 06 September 2023, available online at: https://doi.org/10.1038/s41586-023-06355-3 .Data availability: Summary statistics generated by the COVID-19 HGI are available at https://www.covid19hg.org/results/r5/ and are available in the GWAS Catalog (study code GCST011074). The analyses described here include the freeze-5 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for lead variants of 13 loci are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (https://www.nealelab.is/uk-biobank/), Finucane lab (https://www.finucanelab.org), the FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results) and the eQTL catalogue release 3 (https://www.ebi.ac.uk/eqtl/).Code availability: The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses are available on GitHub (https://github.com/covid19-hg/) and the code for the Mendelian randomization and genetic correlation pipeline is available on GitHub at https://github.com/marcoralab/MRcovid.Reporting summary: Further information on research design is available in the Nature Research Reporting Summary linked to this paper online at: https://www.nature.com/articles/s41586-021-03767-x#MOESM2 .Supplementary information is available onlne at: https://www.nature.com/articles/s41586-021-03767-x#Sec24 .Extended data figures and tables are available online at: https://www.nature.com/articles/s41586-021-03767-x#Sec23 .Copyright © The Author(s) 2021. The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore