19 research outputs found

    Genomes and virulence difference between two physiological races of Phytophthora nicotianae

    Get PDF
    BACKGROUND: Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive. FINDINGS: We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome. CONCLUSIONS: These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13742-016-0108-7) contains supplementary material, which is available to authorized users

    Molecular characterization of tobacco ringspot virus from Iris ensata

    Full text link

    NaPDR1 and NaPDR1-like are essential for the resistance of Nicotiana attenuata against fungal pathogen Alternaria alternata

    No full text
    Pleiotropic drug resistance (PDR) transporters are widely distributed membrane proteins catalyzing the export or import of a diverse array of molecules, and are involved in many plant responses to biotic and abiotic stresses. However, it is unclear whether PDRs are involved in Nicotiana attenuata resistance to the necrotic fungal pathogen Alternaria alternata. In this study, transcriptional levels of both NaPDR1 and NaPDR1-like were highly induced in N. attenuata leaves after A. alternata inoculation. Interestingly, silencing NaPDR1 or NaPDR1-like individually had little effect on N. attenuata resistance to A. alternata; however, when both genes were co-silenced plants became highly susceptible to the fungus, which was associated with elevated JA and ethylene responses. Neither NaPDR1 nor NaPDR1-like was significantly elicited by exogenous treatment with methyl jasmonate (MeJA), whereas both were highly induced by ethylene. The elicitation levels of both genes by A. alternata were significantly reduced in plants with impaired JA or ethylene signaling pathways. Thus, we conclude that both NaPDR1 and NaPDR1-like function redundantly to confer resistance against A. alternata in N. attenuata, and the elicitation of the transcripts of both genes by the fungus is partially dependent on ethylene and jasmonate signaling. Keywords: ABC transporter, Ethylene, Jasmonate, Plant resistance, Pleiotropic drug resistanc

    Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco

    Full text link
    Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date

    The dynamic transcriptome reveals response patterns to black shank disease in tobacco (Nicotiana tabacum L.)

    No full text
    Black shank disease, caused by Phytophthora nicotianae, is one of the major causes of yield loss in tobacco production. The present study aimed to explore the dynamic transcriptome in tobacco genotypes resistant or susceptible to black shank disease and to understand the defense response of tobacco to P. nicotianae infection. Roots and stems were sampled from two resistant and two susceptible materials at 0, 12, 24, 48, and 72 h post infection and used in RNA-sequencing. Conventional approaches that identify differentially expressed genes are not the best way for handling the complex datasets, so a new method that calculates the standard deviation among samples was applied to identify transcripts with variable expression levels in roots and stems of the four materials at different time points. Of the total of 229,501 transcripts, 7,261 were found to be variable transcripts, with many of them annotated to be related to defense responses against pathogen infection. These variable transcripts showed expression patterns that varied significantly between roots and stems as well as between the resistant and the susceptible materials. Several transcripts were identified to be potential candidates for further functional characterization. Our findings provide invaluable insights into the dynamic transcriptome in defense responses of tobacco against P. nicotianae infection

    Construction of a high-density genetic map and dissection of genetic architecture of six agronomic traits in tobacco (Nicotiana tabacum L.)

    No full text
    Tobacco (Nicotiana tabacum L.) is an economic crop and a model organism for studies on plant biology and genetics. A population of 271 recombinant inbred lines (RIL) derived from K326 and Y3, two elite flue-cured tobacco parents, has been constructed to investigate the genetic basis of agronomic traits in tobacco. Six agronomic traits including natural plant height (nPH), natural leaf number (nLN), stem girth (SG), inter-node length (IL), length of the largest leaf (LL) and width of the largest leaf (LW) were measured in seven environments, spanning the period between 2018 and 2021. We firstly developed an integrated SNP-indel-SSR linkage map with 43,301 SNPs, 2,086 indels and 937 SSRs, which contained 7,107 bin markers mapped on 24 LGs and covered 3334.88 cM with an average genetic distance of 0.469cM. Based on this high-density genetic map, a total of 70 novel QTLs were detected for six agronomic traits by a full QTL model using the software QTLNetwork, of which 32 QTLs showed significant additive effects, 18 QTLs showed significant additive-by-environment interaction effects, 17 pairs showed significant additive-by-additive epistatic effects and 13 pairs showed significant epistasis-by-environment interaction effects. In addition to additive effect as a major contributor to genetic variation, both epistasis effects and genotype-by-environment interaction effects played an important role in explaining phenotypic variation for each trait. In particular, qnLN6-1 was detected with considerably large main effect and high heritability (ha2=34.80%). Finally, four genes including Nt16g00284.1, Nt16g00767.1, Nt16g00853.1, Nt16g00877.1 were predicted as pleiotropic candidate genes for five traits.</jats:p

    Quantitative trait locus mapping and genomic selection of tobacco (Nicotiana tabacum L.) based on high-density genetic map

    No full text
    AbstractTobacco (Nicotiana tabacum L.) is an economic crop and a model organism for studies of plant biology and genetics. As an allotetraploid plant generated from interspecific hybridization, tobacco has a massive genome (4.5 Gb). Recently, a genetic map with 45,081 single nucleotide polymorphism (SNP) markers was constructed using whole-genome sequencing data for a tobacco population including 274 individuals. This provides a basis for quantitative trait locus (QTL) mapping and genomic selection, which have been widely applied to other crops but have not been feasible in tobacco. Based on this high-density genetic map, we identified QTLs associated with important agronomic traits, chemical compounds in dry leaves, and hazardous substances in processed cigarettes. The LOD values for major QTLs were highest for agronomic traits, followed by chemical compounds and hazardous substances. In addition to the identification of molecular markers, we evaluated genomic selection models and found that BayesB had the highest prediction accuracy for the recombinant inbred line population. Our results offer new insights into the genetic mechanism underlying important traits, such as agronomic traits and quality-related chemical compounds in tobacco, and will be able to support the application of molecular breeding to tobacco.</jats:p
    corecore