4,009 research outputs found
Transmit design for MIMO wiretap channel with a malicious jammer
In this paper, we consider the transmit design for multi-input multi-output
(MIMO) wiretap channel including a malicious jammer. We first transform the
system model into the traditional three-node wiretap channel by whitening the
interference at the legitimate user. Additionally, the eavesdropper channel
state information (ECSI) may be fully or statistically known, even unknown to
the transmitter. Hence, some strategies are proposed in terms of different
levels of ECSI available to the transmitter in our paper. For the case of
unknown ECSI, a target rate for the legitimate user is first specified. And
then an inverse water-filling algorithm is put forward to find the optimal
power allocation for each information symbol, with a stepwise search being used
to adjust the spatial dimension allocated to artificial noise (AN) such that
the target rate is achievable. As for the case of statistical ECSI, several
simulated channels are randomly generated according to the distribution of
ECSI. We show that the ergodic secrecy capacity can be approximated as the
average secrecy capacity of these simulated channels. Through maximizing this
average secrecy capacity, we can obtain a feasible power and spatial dimension
allocation scheme by using one dimension search. Finally, numerical results
reveal the effectiveness and computational efficiency of our algorithms.Comment: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring
Hanle detection for optical clocks
Considering the strong inhomogeneous spatial polarization and intensity
distribution of spontaneous decay fluorescence due to the Hanle effect, we
propose and demonstrate a universe Hanle detection configuration of
electron-shelving method for optical clocks. Experimental results from Ca
atomic beam optical frequency standard with 423 nm electron-shelving method
show that a designed Hanle detection geometry with optimized magnetic field
direction, detection laser beam propagation and polarization direction, and
detector position can improve the fluorescence collection rate by more than one
order of magnitude comparing with that of inefficient geometry. With the fixed
423 nm fluorescence, the improved 657 nm optical frequency standard signal
intensity is presented. And the potential application of the Hanle detection
geometry designed for facilitating the fluorescence collection for optical
lattice clock with a limited solid angle of the fluorescence collection has
been discussed. This Hanle detection configuration is also effective for ion
detection in ion optical clock and quantum information experiments. Besides, a
cylinder fluorescence collection structure is designed to increase the solid
angle of the fluorescence collection in Ca atomic beam optical frequency
standard.Comment: 5 pages, 6 figure
A peak capacitor current pulse-train controlled buck converter with fast transient response and a wide load range
It is known that ripple-based control of a switching dc-dc converter benefits from a faster transient response than a conventional PWM control switching dc-dc converter. However, ripple-based control switching dc-dc converters may suffer from fast-scale oscillation. In order to achieve fast transient response and ensure stable operation of a switching dc-dc converter over a wide load range, based on a conventional pulse train control technique, a peak capacitor current pulse train (PCC-PT) control technique is proposed in this paper. With a buck converter as an example, the operating modes, steady-state performance and transient respond performance of a PCC-PT controlled buck converter are presented and assessed. To eliminate fast-scale oscillation, circuit and control parameter design consideration are given. An accurate discrete iteration model of a PCC-PT controlled buck converter is established, based on which, the effects of circuit parameters on stability of converter operating in a DCM mode, mixed DCM-CCM mode, and CCM mode are studied. Simulation and experimental results are presented to verify the analysis results
Recommended from our members
Enhanced Delivery of Rituximab Into Brain and Lymph Nodes Using Timed-Release Nanocapsules in Non-Human Primates.
Tumor metastasis into the central nervous system (CNS) and lymph nodes (LNs) is a major obstacle for effective therapies. Therapeutic monoclonal antibodies (mAb) have revolutionized tumor treatment; however, their efficacy for treating metastatic tumors-particularly, CNS and LN metastases-is poor due to inefficient penetration into the CNS and LNs following intravenous injection. We recently reported an effective delivery of mAb to the CNS by encapsulating the anti-CD20 mAb rituximab (RTX) within a thin shell of polymer that contains the analogs of choline and acetylcholine receptors. This encapsulated RTX, denoted as n-RTX, eliminated lymphoma cells systemically in a xenografted humanized mouse model using an immunodeficient mouse as a recipient of human hematopoietic stem/progenitor cells and fetal thymus more effectively than native RTX; importantly, n-RTX showed notable anti-tumor effect on CNS metastases which is unable to show by native RTX. As an important step toward future clinical translation of this technology, we further analyzed the properties of n-RTX in immunocompetent animals, rats, and non-human primates (NHPs). Our results show that a single intravenous injection of n-RTX resulted in 10-fold greater levels in the CNS and 2-3-fold greater levels in the LNs of RTX, respectively, than the injection of native RTX in both rats and NHPs. In addition, we demonstrate the enhanced delivery and efficient B-cell depletion in lymphoid organs of NHPs with n-RTX. Moreover, detailed hematological analysis and liver enzyme activity tests indicate n-RTX treatment is safe in NHPs. As this nanocapsule platform can be universally applied to other therapeutic mAbs, it holds great promise for extending mAb therapy to poorly accessible body compartments
Recommended from our members
Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice.
Approximately 15-40% of all cancers develop metastases in the central nervous system (CNS), yet few therapeutic options exist to treat them. Cancer therapies based on monoclonal antibodies are widely successful, yet have limited efficacy against CNS metastases, owing to the low levels of the drug reaching the tumour site. Here, we show that the encapsulation of rituximab within a crosslinked zwitterionic polymer layer leads to the sustained release of rituximab as the crosslinkers are gradually hydrolysed, enhancing the CNS levels of the antibody by approximately tenfold with respect to the administration of naked rituximab. When the nanocapsules were functionalized with CXCL13-the ligand for the chemokine receptor CXCR5, which is frequently found on B-cell lymphoma-a single dose led to improved control of CXCR5-expressing metastases in a murine xenograft model of non-Hodgkin lymphoma, and eliminated lymphoma in a xenografted humanized bone marrow-liver-thymus mouse model. Encapsulation and molecular targeting of therapeutic antibodies could become an option for the treatment of cancers with CNS metastases
Evaluating Value at Risk Models at Canadian Commercial Banks
FRM Project-Simon Fraser Universit
Association of erythrocyte n-3 polyunsaturated fatty acids with incident type 2 diabetes in a Chinese population
Summary
Background & aims
The association between circulating n-3 polyunsaturated fatty acid (PUFA) biomarkers and incident type 2 diabetes in Asian populations remains unclear. We aimed to examine the association of erythrocyte n-3 PUFA with incident type 2 diabetes in a Chinese population.
Methods
A total of 2671 participants, aged 40–75 y, free of type 2 diabetes at baseline, were included in the present analysis. Incident type 2 diabetes cases (n = 213) were ascertained during median follow-up of 5.6 years. Baseline erythrocyte fatty acids were measured by gas chromatography. We used multivariable Cox regression models to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of type 2 diabetes across quartiles of erythrocyte n-3 PUFA.
Results
After adjustment for potential confounders, HRs (95% CIs) of type 2 diabetes were 0.68 (0.47, 1.00), 0.77 (0.52, 1.15), and 0.63 (0.41, 0.95) in quartiles 2–4 of docosapentaenoic acid (C22:5n-3) (P-trend = 0.07), compared with quartile 1; and 1.08 (0.74, 1.60), 1.03 (0.70, 1.51), and 0.57 (0.38, 0.86) for eicosapentaenoic acid (C20:5n-3) (P-trend = 0.007). No association was found for docosahexaenoic acid (C22:6n-3) or alpha-linolenic acid (C18:3n-3).
Conclusions
Erythrocyte n-3 PUFA from marine sources (C22:5n-3 and C20:5n-3), as biomarkers of dietary marine n-3 PUFA, were inversely associated with incident type 2 diabetes in this Chinese population. Future prospective investigations in other Asian populations are necessary to confirm our findings
- …
