24 research outputs found

    CAS-ESM2.0 Dataset for the G1ext Experiment of the Geoengineering Model Intercomparison Project (GeoMIP)

    Get PDF
    Solar radiation modification, a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions, has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project (GeoMIP) framework, utilizing the Chinese Academy of Sciences Earth System Model version 2 (CAS-ESM2.0). This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext, which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO2 concentration, running for 100 years. Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO2 concentration. Like other Earth system models, CAS-ESM2.0 reasonably captures variations in radiative adjustments, surface air temperature, and precipitation patterns, both globally and locally, under the G1ext scenario. The generated datasets have been released on the Earth System Grid Federation data server, providing insight into the potential efficacy and impact of solar geoengineering strategies

    Atlantic hurricane surge response to geoengineering

    Get PDF
    Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    Arctic sea ice and atmospheric circulation under the abrupt4xCO2 scenario

    Get PDF
    We analyze sea ice changes from eight different earth system models that have conducted experiment abrupt4xCO2 of the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to abrupt quadrupling of CO2 from preindustrial levels, Arctic temperatures dramatically rise by about 10°C—16°C in winter and the seasonal sea ice cycle and sea ice concentration are significantly changed compared with the pre-industrial control simulations (piControl). Changes of Arctic sea ice concentration are spatially correlated with temperature patterns in all seasons and highest in autumn. Changes in sea ice are associated with changes in atmospheric circulation patterns at heights up to the jet stream. While the pattern of sea level pressure changes is generally similar to the surface air temperature change pattern, the wintertime 500 hPa circulation displays a positive Pacific North America (PNA) anomaly under abrupt4xCO2-piControl. This large scale teleconnection may contribute to, or feedback on, the simulated sea ice cover change and is associated with an intensification of the jet stream over East Asia and the north Pacific in winter
    corecore