1,078 research outputs found
Structural aspects of tilings
In this paper, we study the structure of the set of tilings produced by any
given tile-set. For better understanding this structure, we address the set of
finite patterns that each tiling contains. This set of patterns can be analyzed
in two different contexts: the first one is combinatorial and the other
topological. These two approaches have independent merits and, once combined,
provide somehow surprising results. The particular case where the set of
produced tilings is countable is deeply investigated while we prove that the
uncountable case may have a completely different structure. We introduce a
pattern preorder and also make use of Cantor-Bendixson rank. Our first main
result is that a tile-set that produces only periodic tilings produces only a
finite number of them. Our second main result exhibits a tiling with exactly
one vector of periodicity in the countable case.Comment: 11 page
Detection of an anomalous cluster in a network
We consider the problem of detecting whether or not, in a given sensor
network, there is a cluster of sensors which exhibit an "unusual behavior."
Formally, suppose we are given a set of nodes and attach a random variable to
each node. We observe a realization of this process and want to decide between
the following two hypotheses: under the null, the variables are i.i.d. standard
normal; under the alternative, there is a cluster of variables that are i.i.d.
normal with positive mean and unit variance, while the rest are i.i.d. standard
normal. We also address surveillance settings where each sensor in the network
collects information over time. The resulting model is similar, now with a time
series attached to each node. We again observe the process over time and want
to decide between the null, where all the variables are i.i.d. standard normal,
and the alternative, where there is an emerging cluster of i.i.d. normal
variables with positive mean and unit variance. The growth models used to
represent the emerging cluster are quite general and, in particular, include
cellular automata used in modeling epidemics. In both settings, we consider
classes of clusters that are quite general, for which we obtain a lower bound
on their respective minimax detection rate and show that some form of scan
statistic, by far the most popular method in practice, achieves that same rate
to within a logarithmic factor. Our results are not limited to the normal
location model, but generalize to any one-parameter exponential family when the
anomalous clusters are large enough.Comment: Published in at http://dx.doi.org/10.1214/10-AOS839 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Fixed Parameter Undecidability for Wang Tilesets
Deciding if a given set of Wang tiles admits a tiling of the plane is
decidable if the number of Wang tiles (or the number of colors) is bounded, for
a trivial reason, as there are only finitely many such tilesets. We prove
however that the tiling problem remains undecidable if the difference between
the number of tiles and the number of colors is bounded by 43.
One of the main new tool is the concept of Wang bars, which are equivalently
inflated Wang tiles or thin polyominoes.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
Phase-space methods in nuclear reactions around the Fermi energy
Some prescriptions for in-medium complex particle production in nuclear
reactions are proposed. They have been implemented in two models to simulate
nucleon-nucleus (nIPSE) and nucleus-nucleus (HIPSE) reactions around the Fermi
energy \cite{Lac04,Lac05}. Our work emphasizes the effect of randomness in
cluster formation, the importance of the nucleonic Fermi motion as well as the
role of conservation laws. The key role of the phase-space exploration before
and after secondary decay is underlined. This is illustrated in the case of two
debated issues: the memory loss of the entrance channel in central collisions
and the partitions after the pre-equilibrium stage.Comment: Proceedings of the IWM2005 workshop, Catane (Italy), Nov. 2005.
DOWNLOAD HIPSE program at:
http://caeinfo.in2p3.fr/theorie/theory_lacroix.htm
Spherical angular spectrum and the fractional order Fourier transform
International audienceThe notion of a spherical angular spectrum leads to the decomposition of the field amplitude on a spherical emitter into a sum of spherical waves that converge onto the Fourier sphere of the emitter. Unlike the usual angular spectrum, the spherical angular spectrum is propagated as the field amplitude, in a way that can be expressed by a fractional order Fourier transform
Qualitative and Semiquantitative Assessment of Exposure to Engineered Nanomaterials within the French EpiNano Program: Inter- and Intramethod Reliability Study
The relatively recent development of industries working with nanomaterials has created challenges for exposure assessment. In this article, we propose a relatively simple approach to assessing nanomaterial exposures for the purposes of epidemiological studies of workers in these industries. This method consists of an onsite industrial hygiene visit of facilities carried out individually and a description of workstations where nano-objects and their agglomerates and aggregates (NOAA) are present using a standardized tool, the Onsite technical logbook. To assess its reliability, we implemented this approach for assessing exposure to NOAA in workplaces at seven workstations which synthesize and functionalize carbon nanotubes. The prediction of exposure to NOAA using this method exhibited substantial agreement with that of the reference method, the latter being based on an onsite group visit, an expert’s report and exposure measurements (Cohen kappa = 0.70, sensitivity = 0.88, specificity = 0.92). Intramethod comparison of results for exposure prediction showed moderate agreement between the three evaluators (two program team evaluators and one external evaluator) (weighted Fleiss kappa = 0.60, P = 0.003). Interevaluator reliability of the semiquantitative exposure characterization results was excellent between the two evaluators from the program team (Spearman rho = 0.93, P = 0.03) and fair when these two evaluators’ results were compared with the external evaluator’s results. The project was undertaken within the framework of the French epidemiological surveillance program EpiNano. This study allowed a first reliability assessment of the EpiNano method. However, to further validate this method a comparison with robust quantitative exposure measurement data is necessary
Simultaneous pressure-volume measurements using optical sensors and MRI 1 for left ventricle function assessment during animal experiment 2
International audienceSimultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state
The success story of the implementation of the national food safety agency in Ivory Coast
The 3C Ivoire EuropeAid project (2011–2015), set up a coordination committee in Ivory Coast to evaluate the effectiveness of sanitary controls, prevent sanitary risks and coordinate nationwide actions on food safety [1]. This paper reports main findings: difficulties to apply regulations in Ivory Coast, to establish a national food safety agency, to implement a national health surveillance system, to set up a potential food safety label, training on food safety systems (HACCP, traceability, good hygiene practices), first experimental committee of national experts. Ivoirians are concerned by food safety hazards. All food samples collected in markets were contaminated by pathogens. Three of the main food consumed in the country: rice, maize, peanut were contaminated with mycotoxins, and aflatoxin levels in peanut paste were well above the EU limits. The decree creating the Ivorian agency was signed in late June 2016. (Résumé d'auteur
High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
(abridged) A complete census of planetary systems around a volume-limited
sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform
sensitivity down to Earth-mass planets within their Habitable Zones out to
several AUs would be a major milestone in extrasolar planets astrophysics. This
fundamental goal can be achieved with a mission concept such as NEAT - the
Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne
extremely-high-precision astrometric measurements sufficient to detect
dynamical effects due to orbiting planets of mass even lower than Earth's
around the nearest stars. Such a survey mission would provide the actual
planetary masses and the full orbital geometry for all the components of the
detected planetary systems down to the Earth-mass limit. The NEAT performance
limits can be achieved by carrying out differential astrometry between the
targets and a set of suitable reference stars in the field. The NEAT instrument
design consists of an off-axis parabola single-mirror telescope, a detector
with a large field of view made of small movable CCDs located around a fixed
central CCD, and an interferometric calibration system originating from
metrology fibers located at the primary mirror. The proposed mission
architecture relies on the use of two satellites operating at L2 for 5 years,
flying in formation and offering a capability of more than 20,000
reconfigurations (alternative option uses deployable boom). The NEAT primary
science program will encompass an astrometric survey of our 200 closest F-, G-
and K-type stellar neighbors, with an average of 50 visits. The remaining time
might be allocated to improve the characterization of the architecture of
selected planetary systems around nearby targets of specific interest (low-mass
stars, young stars, etc.) discovered by Gaia, ground-based high-precision
radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member
list of the NEAT proposal and the news about the project are available at
http://neat.obs.ujf-grenoble.fr. The final publication is available at
http://www.springerlink.co
- …
