394 research outputs found

    El error generador de lógica

    Get PDF
    Se propone ir más allá de lo concreto en Educación, de los desarrollos teóricos del proceso. Dado que se educa para transmitir conceptos y valores ya consensuados con un marco de referencia. Se pretenden planteamientos alternativos desde la misma estructura lógica desde donde se creó la problemática, referencia externa. La educación posee una lógica del diseño (externa), en los circuitos de percepción de lo concreto de cada discente; dejando fuera el propósito del niño/niña (interno). Al buscar la referencia externa, la percepción del alumnado se cristaliza y se suprime el acceso a todo pensamiento genuino. Más allá de un diseño, que se destruye a sí mismo por su falta de funcionalidad, motivación, etc. Este diseño, no es funcional en el momento presente, buscar la inmutabilidad del paradigma educativo en el que hemos situado a nuestra sociedad en constante cambio. Este trabajo surge a partir de la propuesta de Espacio Puente Málaga, espacio vivo de descubrimiento y aprendizaje a través de las artes, la naturaleza y el juego para niños en Alhaurín de la Torre, donde el sol, la tierra y los niños eran protagonistas. Se planteó desde la certeza del efecto de la conexión con la tierra, generadora de conciencia a través de la experiencia. Observar el proceso y asumir el margen de error en todos los diseños humanos. Error como herramienta diseñado en el abstracto y previo a la identidad particular. Abrirnos al mecanismo universal de posibilidades, “ soy con mis circunstancias, emociones” llamados “realidad”, ligada a lo real, que queda abrochada, cristalizada, validando el diseño y no permitiéndonos ver la lógica abstracta y los potenciales que la modulan . E DU CAR desde la mirada del potencial dentro de cada ser humano con su autoreferencia. La realidad se desarticula de los automatismos cuando formulamos cuestionamientos que dejamos sueltos, rompemos preguntas, las desarticulamos de las respuestas automatizadas en la linealidad.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Automatic configuration of NSGA-II with jMetal and irace

    Get PDF
    jMetal is a Java-based framework for multi-objective optimization with metaheuristics providing, among other features, a wide set of algorithms that are representative of the state-of-the-art. Although it has become a widely used tool in the area, it lacks support for automatic tuning of algorithm parameter settings, which can prevent obtaining accurate Pareto front approximations, especially for inexperienced users. In this paper, we present a first approach to combine jMetal and irace, a package for automatic algorithm configuration; the NSGA-II is chosen as the target algorithm to be tuned. The goal is to facilitate the combined use of both tools to jMetal users to avoid wasting time in adjusting manually the parameters of the algorithms. Our proposal involves the definition of a new algorithm template for evolutionary algorithms, which allows the flexible composition of multi-objective evolutionary algorithms from a set of configurable components, as well as the generation of configuration files for adjusting the algorithm parameters with irace. To validate our approach, NSGA-II is tuned with a benchmark problems and compared with the same algorithm using standard settings, resulting in a new variant that shows a competitive behavior.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Tratamiento fiscal del crowdfunding en España

    Get PDF
    El nuevo modelo de financiación participativa o crowdfunding surge por las crecientes necesidades del mercado, convirtiéndose en una innovación social frente a los métodos tradicionales, basada en la búsqueda de financiación por parte de los promotores de proyectos y la respuesta ciudadana como parte inversora. En el crowdfunding se distinguen distintas tipologías con sus correspondientes diferencias, tanto conceptuales como jurídicas y tributarias en las que se encuentran la tributación a impuestos de diversa modalidad según el carácter del sujeto que lleva a cabo la operación.Universidad de Sevilla. Doble Grado en Administración y Dirección de Empresas y en Derech

    Redesigning the jMetal Multi-Objective Optimization Framework

    Get PDF
    jMetal, an open source, Java-based framework for multi-objective optimization with metaheuristics, has become a valuable tool for many researches in the area as well as for some industrial partners in the last ten years. Our experience using and maintaining it during that time, as well as the received comments and suggestions, have helped us improve the jMetal design and identify significant features to incorporate. This paper revisits the jMetal architecture, describing its refined new design, which relies on design patterns, principles from object-oriented design, and a better use of the Java language features to improve the quality of the code, without disregarding jMetal ever goals of simplicity, facility of use, flexibility, extensibility and portability. Among the newly incorporated features, jMetal supports live interaction with running algorithms and parallel execution of algorithms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Study of the Combination of Variation Operators in the NSGA-II Algorithm

    Get PDF
    Multi-objective evolutionary algorithms rely on the use of variation operators as their basic mechanism to carry out the evolutionary process. These operators are usually fixed and applied in the same way during algorithm execution, e.g., the mutation probability in genetic algorithms. This paper analyses whether a more dynamic approach combining different operators with variable application rate along the search process allows to improve the static classical behavior. This way, we explore the combined use of three different operators (simulated binary crossover, differential evolution’s operator, and polynomial mutation) in the NSGA-II algorithm. We have considered two strategies for selecting the operators: random and adaptive. The resulting variants have been tested on a set of 19 complex problems, and our results indicate that both schemes significantly improve the performance of the original NSGA-II algorithm, achieving the random and adaptive variants the best overall results in the bi- and three-objective considered problems, respectively.UNIVERSIDAD DE MÁLAGA. CAMPUS DE EXCELENCIA INTERNACIONAL ANDALUCÍA TEC

    Dynamic Multi-Objective Optimization With jMetal and Spark: a Case Study

    Get PDF
    Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Autotuning Stencil Computations with Structural Ordinal Regression Learning

    Get PDF
    Stencil computations expose a large and complex space of equivalent implementations. These computations often rely on autotuning techniques, based on iterative compilation or machine learning (ML), to achieve high performance. Iterative compilation autotuning is a challenging and time-consuming task that may be unaffordable in many scenarios. Meanwhile, traditional ML autotuning approaches exploiting classification algorithms (such as neural networks and support vector machines) face difficulties in capturing all features of large search spaces. This paper proposes a new way of automatically tuning stencil computations based on structural learning. By organizing the training data in a set of partially-sorted samples (i.e., rankings), the problem is formulated as a ranking prediction model, which translates to an ordinal regression problem. Our approach can be coupled with an iterative compilation method or used as a standalone autotuner. We demonstrate its potential by comparing it with state-of-the-art iterative compilation methods on a set of nine stencil codes and by analyzing the quality of the obtained ranking in terms of Kendall rank correlation coefficients

    About Designing an Observer Pattern-Based Architecture for a Multi-objective Metaheuristic Optimization Framework

    Get PDF
    Multi-objective optimization with metaheuristics is an active and popular research field which is supported by the availability of software frameworks providing algorithms, benchmark problems, quality indicators and other related components. Most of these tools follow a monolithic architecture that frequently leads to a lack of flexibility when a user intends to add new features to the included algorithms. In this paper, we explore a different approach by designing a component-based architecture for a multi-objective optimization framework based on the observer pattern. In this architecture, most of the algorithmic components are observable entities that naturally allows to register a number of observers. This way, a metaheuristic is composed of a set of observable and observer elements, which can be easily extended without requiring to modify the algorithm. We have developed a prototype of this architecture and implemented the NSGA-II evolutionary algorithm on top of it as a case study. Our analysis confirms the improvement of flexibility using this architecture, pointing out the requirements it imposes and how performance is affected when adopting it.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Multi-Objective Big Data Optimization with jMetal and Spark

    Get PDF
    Big Data Optimization is the term used to refer to optimization problems which have to manage very large amounts of data. In this paper, we focus on the parallelization of metaheuristics with the Apache Spark cluster computing system for solving multi-objective Big Data Optimization problems. Our purpose is to study the influence of accessing data stored in the Hadoop File System (HDFS) in each evaluation step of a metaheuristic and to provide a software tool to solve these kinds of problems. This tool combines the jMetal multi-objective optimization framework with Apache Spark. We have carried out experiments to measure the performance of the proposed parallel infrastructure in an environment based on virtual machines in a local cluster comprising up to 100 cores. We obtained interesting results for computational e ort and propose guidelines to face multi-objective Big Data Optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Bi-objective Workflow Scheduling in Production Clouds: Early Simulation Results and Outlook

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.We present MOHEFT, a multi-objective list scheduling heuristic that provides the user with a set of Pareto tradeoff optimal solutions from which the one that better suits the user requirements can be manually selected. We demonstrate the potential of our method for multi-objective workflow scheduling on the commercial Amazon EC2 Cloud by comparing the quality of the MOHEFT tradeoff solutions with a state-of-the-art multi-objective approach called SPEA2* for three types of synthetic workflows with different parallelism and load balancing characteristics. We conclude with an outlook into future research towards closing the gap between the scientific simulation and real-world experimentation.The work presented in this paper has been partially supported by EU under the COST programme Action IC1305, Network for Sustainable Ultrascale Computing (NESUS)
    corecore