98 research outputs found

    Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    Get PDF
    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers

    Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance

    Get PDF
    We report a systematic study into the effects of cyano substitution on the electron accepting ability of the common acceptor 4,7-bis(thiophen-2-yl)-2,1,3-benzothiadiazole (DTBT). We describe the synthesis of DTBT monomers with either 0, 1, or 2 cyano groups on the BT unit and their corresponding copolymers with the electron rich donor dithienogermole (DTG). The presence of the cyano group is found to have a strong influence on the optoelectronic properties of the resulting donor–acceptor polymers, with the optical band gap red-shifting by approximately 0.15 eV per cyano substituent. We find that the polymer electron affinity is significantly increased by ∼0.25 eV upon addition of each cyano group, while the ionization potential is less strongly affected, increasing by less than 0.1 eV per cyano substituent. In organic photovoltaic (OPV) devices power conversion efficiencies (PCE) are almost doubled from around 3.5% for the unsubstituted BT polymer to over 6.5% for the monocyano substituted BT polymer. However, the PCE drops to less than 1% for the dicyano substituted BT polymer. These differences are mainly related to differences in the photocurrent, which varies by 1 order of magnitude between the best (1CN) and worst devices (2CN). The origin of this variation in the photocurrent was investigated by studying the charge generation properties of the photoactive polymer–fullerene blends using fluorescence and transient absorption spectroscopic techniques. These measurements revealed that the improved photocurrent of 1CN in comparison to 0CN was due to improved light harvesting properties while maintaining a high exciton dissociation yield. The addition of one cyano group to the BT unit optimized the position of the polymer LUMO level closer to that of the electron acceptor PC71BM, such that the polymer’s light harvesting properties were improved without sacrificing either the exciton dissociation yield or device VOC. We also identify that the drop in performance for the 2CN polymer is caused by very limited yields of electron transfer from the polymer to the fullerene, likely caused by poor orbital energy level alignment with the fullerene acceptor (PC71BM). This work highlights the impact that small changes in chemical structure can have on the optoelectronic and device properties of semiconducting polymer. In particular this work highlights the effect of LUMO–LUMO offset on the excited state dynamics of polymer–fullerene blends

    High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Get PDF
    We thank BASF for partial financial support, as well as EPSRC Projects EP/G037515/1 and EP/M023532/1, EC FP7 Project SC2 (610115), EC FP7 Project ArtESun (604397), EC FP7 Project POLYMED (612538), Project Synthetic carbon allotropes project SFB 953 and the King Abdullah University of Science and Technology (KAUST)

    Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses

    Get PDF
    Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices

    Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers

    Get PDF
    This study addresses the dependence of charge transfer efficiency between bilayers of methylammonium lead iodide (MAPI3) with PC61BM or poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) charge transfer layers on excitation intensity. It analyzes the kinetic competition between interfacial electron/hole transfer and charge trapping and recombination within MAPI3 by employing a range of optical measurements including steady‐state (SS) photoluminescence quenching (PLQ), and transient photoluminescence and absorption over a broad range of excitation densities. The results indicate that PLQ measurements with a typical photoluminescence spectrometer can yield significantly different transfer efficiencies to those measured under 1 Sun irradiation. Steady‐state and pulsed measurements indicate low transfer efficiencies at low excitation conditions (5E + 17 cm−3) due to fast bimolecular recombination. Efficient transfer to PC61BM or PEDOT:PSS is only observed under intermediate excitation conditions (≈1 Sun irradiation) where electron and hole transfer times are determined to be 36 and 11 ns, respectively. The results are discussed in terms of their relevance to the excitation density dependence of device photocurrent generation, impact of charge trapping on this dependence, and appropriate methodologies to determine charge transfer efficiencies relevant to device performance

    Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    Get PDF
    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particu-lar the separation dynamics within molecularly-intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devic-es of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PC70BM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometre lengthscale. Laser spectroscopic studies show that these changes in morphology cor-relate quantitatively with the changes in charge separation dynamics on the nanosecond timescale, and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly in-termixed polymer-fullerene phase is observed, photoexcitation results in a ~30% charge loss from gem-inate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥ 67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ~4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase making the fullerene domains accessible for electron escape

    Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance

    Get PDF
    Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore