833 research outputs found

    Inertial navigation systems for mobile robots

    Get PDF
    Cataloged from PDF version of article.A low-cost solid-state inertial navigation system (INS) for mobile robotics applications is described. Error models for the inertial sensors are generated and included in an Extended Kalman Filter (EKF) for estimating the position and orientation of a moving robot vehicle. Two Merent solid-state gyroscopes have been evaluated for estimating the orientation of the robot. Performance of the gyroscopes with error models is compared to the performance when the error models are excluded from the system. The results demonstrate that without error compensation, the error in orientation is between 5-15"/min but can be improved at least by a factor of 5 if an adequate error model is supplied. Siar error models have been developed for each axis of a solid-state triaxial accelerometer and for a conducting-bubble tilt sensor which may also be used as a low-cost accelerometer. Linear position estimation with information from accelerometers and tilt sensors is more susceptible to errors due to the double integration process involved in estimating position. With the system described here, the position drift rate is 1-8 cds, depending on the frequency of acceleration changes. An integrated inertial platform consisting of three gyroscopes, a triaxial accelerometer and two tilt sensors is described. Results from tests of this platform on a large outdoor mobile robot system are described and compared to the results obtained from the robot's own radar-based guidance system. Like all inertial systems, the platform requires additional information from some absolute position-sensing mechanism to overcome long-term drift. However, the results show that with careful and detailed modeling of error sources, low-cost inertial sensing systems can provide valuable orientation and position information particularly for outdoor mobile robot applications

    Evaluation of solid-state gyroscope for robotics applications

    Get PDF
    Cataloged from PDF version of article.he evaluation of a low-cost solid-state gyroscope for robotics applications is described. An error model for the sensor is generated and included in a Kalman filter for estimating the orientation of a moving robot vehicle. Orientation eshation with the error model is compared to the performance when the error model is excluded from the system. The results demonstrate that without error compensation, the error in localization is between 5-15"/min but can be improved at least by a factor of 5 if an adequate error model is supplied. Like all inertial systems, the platform requires additional information from some absolute position-sensing mechanism to overcome long-term drift. However, the results show that with careful and detailed modeling of error sources, inertial sensors can provide valuable orientation information for mobile robot applications

    Load Balancing for Mobility-on-Demand Systems

    Get PDF
    In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pick-up vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: Vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. We develop a rebalancing policy that minimizes the number of vehicles performing rebalancing trips. To do this, we utilize a fluid model for the customers and vehicles in the system. The model takes the form of a set of nonlinear time-delay differential equations. We then show that the optimal rebalancing policy can be found as the solution to a linear program. By analyzing the dynamical system model, we show that every station reaches an equilibrium in which there are excess vehicles and no waiting customers.We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. We verify policy performance in a simulated mobility-on-demand environment with stochastic features found in real-world urban transportation networks

    AUV SLAM and experiments using a mechanical scanning forward-looking sonar

    Get PDF
    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods

    Mobile Robot Navigation Under Pose Uncertainty in Unknown Environments

    Get PDF
    The navigation of a mobile robot under uncertainty in its pose information in an unknown environment is the subject of this paper. The mobile robot is equipped with a limited-field of view limited-range finder and a magnetometer to infer its orientation. The target location is known, while the robot’s localization suffers from measurement errors. The uncertainty is taken into consideration by calculation of the Guaranteed Visibility and Guaranteed Sensed Area, where safe navigation can be assumed regardless of the measurement error. A switching objective function initially guarantees the exploration towards the target area and afterwards safely guides the robot towards it. Simulation results that prove the efficiency of the proposed scheme are presented.<br/

    Reset-free Trial-and-Error Learning for Robot Damage Recovery

    Get PDF
    The high probability of hardware failures prevents many advanced robots (e.g., legged robots) from being confidently deployed in real-world situations (e.g., post-disaster rescue). Instead of attempting to diagnose the failures, robots could adapt by trial-and-error in order to be able to complete their tasks. In this situation, damage recovery can be seen as a Reinforcement Learning (RL) problem. However, the best RL algorithms for robotics require the robot and the environment to be reset to an initial state after each episode, that is, the robot is not learning autonomously. In addition, most of the RL methods for robotics do not scale well with complex robots (e.g., walking robots) and either cannot be used at all or take too long to converge to a solution (e.g., hours of learning). In this paper, we introduce a novel learning algorithm called "Reset-free Trial-and-Error" (RTE) that (1) breaks the complexity by pre-generating hundreds of possible behaviors with a dynamics simulator of the intact robot, and (2) allows complex robots to quickly recover from damage while completing their tasks and taking the environment into account. We evaluate our algorithm on a simulated wheeled robot, a simulated six-legged robot, and a real six-legged walking robot that are damaged in several ways (e.g., a missing leg, a shortened leg, faulty motor, etc.) and whose objective is to reach a sequence of targets in an arena. Our experiments show that the robots can recover most of their locomotion abilities in an environment with obstacles, and without any human intervention.Comment: 18 pages, 16 figures, 3 tables, 6 pseudocodes/algorithms, video at https://youtu.be/IqtyHFrb3BU, code at https://github.com/resibots/chatzilygeroudis_2018_rt

    Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm

    Get PDF
    This paper introduces several non-arbitrary feature selection techniques for a Simultaneous Localization and Mapping (SLAM) algorithm. The feature selection criteria are based on the determination of the most significant features from a SLAM convergence perspective. The SLAM algorithm implemented in this work is a sequential EKF (Extended Kalman filter) SLAM. The feature selection criteria are applied on the correction stage of the SLAM algorithm, restricting it to correct the SLAM algorithm with the most significant features. This restriction also causes a decrement in the processing time of the SLAM. Several experiments with a mobile robot are shown in this work. The experiments concern the map reconstruction and a comparison between the different proposed techniques performance. The experiments were carried out at an outdoor environment composed by trees, although the results shown herein are not restricted to a special type of features

    A sensor fusion layer to cope with reduced visibility in SLAM

    Get PDF
    Mapping and navigating with mobile robots in scenarios with reduced visibility, e.g. due to smoke, dust, or fog, is still a big challenge nowadays. In spite of the tremendous advance on Simultaneous Localization and Mapping (SLAM) techniques for the past decade, most of current algorithms fail in those environments because they usually rely on optical sensors providing dense range data, e.g. laser range finders, stereo vision, LIDARs, RGB-D, etc., whose measurement process is highly disturbed by particles of smoke, dust, or steam. This article addresses the problem of performing SLAM under reduced visibility conditions by proposing a sensor fusion layer which takes advantage from complementary characteristics between a laser range finder (LRF) and an array of sonars. This sensor fusion layer is ultimately used with a state-of-the-art SLAM technique to be resilient in scenarios where visibility cannot be assumed at all times. Special attention is given to mapping using commercial off-the-shelf (COTS) sensors, namely arrays of sonars which, being usually available in robotic platforms, raise technical issues that were investigated in the course of this work. Two sensor fusion methods, a heuristic method and a fuzzy logic-based method, are presented and discussed, corresponding to different stages of the research work conducted. The experimental validation of both methods with two different mobile robot platforms in smoky indoor scenarios showed that they provide a robust solution, using only COTS sensors, for adequately coping with reduced visibility in the SLAM process, thus decreasing significantly its impact in the mapping and localization results obtained
    corecore