2,156 research outputs found
Attitudes of geriatric patients in a mental hospital toward rehabilitation planning
Thesis (M.S.)--Boston Universit
Recommended from our members
Importance of low-angle grain boundaries in YBa2Cu3O7-delta coated conductors
Over the past ten years the perception of grain boundaries in YBa2Cu3O7-δ
conductors has changed greatly. They are no longer a problem to be eliminated but an
inevitable and potentially favourable part of the material. This change has arisen as a
consequence of new manufacturing techniques which result in excellent grain alignment,
reducing the spread of grain boundary misorientation angles. At the same time there
is considerable recent evidence which indicates that the variation of properties of grain
boundaries with mismatch angle is more complex than a simple exponential decrease in critical
current. This is due to the fact that low-angle grain boundaries represent a qualitatively
different system to high angle boundaries. The time is therefore right for a targetted
review of research into low-angle YBa2Cu3O7-δ grain boundaries. This article does
not purport to be a comprehensive review of the physics of grain boundaries as found in
YBa2Cu3O7-δ in general; for a broader overview we would recommend that the reader
consult the comprehensive review of Hilgenkamp and Mannhart (Rev. Mod. Phys., 74, 485,
2002). The purpose of this article is to review the origin and properties of the low-angle grain
boundaries found in YBa2Cu3O7-δ coated conductors both individually and as a collective
system.EPSR
Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries
We report on the in-plane magnetic field (H) dependence of the critical
current density (Jc) in meandered and planar single grain boundaries (GBs)
isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the
planar GB are consistent with those previously seen in single GBs of YBCO films
grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux
channeling regime when H is oriented near the GB plane, associated with a
reduced Jc, is seen. The meandered GB does not show vortex channeling since it
is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP
Characterization of bulk MgB2 synthesized by infiltration and growth
Superconducting MgB2 has been synthesized successfully by a modified infiltration and growth (IG) technique. The ambient pressure technique is relatively simple and scalable to complex shaped bulks. The extent of MgB 2 phase formation has been found to be influenced strongly by the IG process time and/or temperature, and this is found to reflect in the X-ray diffraction patterns, magnetization measurements, and microhardness. Scanning electron microscopy images show a bimodal particle size distribution with 20-50 nm sized fine precipitates in the inter particle region. A critical current density of 400 kA cm-2 was measured at 5 K.KACST-Cambridge Research Centre, Cambridge, U.K
Groups 5 and 6 Terminal Hydrazido(2−) Complexes: N_β Substituent Effects on Ligand-to-Metal Charge-Transfer Energies and Oxidation States
Brightly colored terminal hydrazido(2−) (dme)MCl_3(NNR_2) (dme = 1,2-dimethoxyethane; M = Nb, Ta; R = alkyl, aryl) or (MeCN)WCl_4(NNR_2) complexes have been synthesized and characterized. Perturbing the electronic environment of the β (NR_2) nitrogen affects the energy of the lowest-energy charge-transfer (CT) transition in these complexes. For group 5 complexes, increasing the energy of the N_β lone pair decreases the ligand-to-metal CT (LMCT) energy, except for electron-rich niobium dialkylhydrazides, which pyramidalize N_β in order to reduce the overlap between the Nb═Nα π bond and the Nβ lone pair. For W complexes, increasing the energy of N_β eventually leads to reduction from formally [W^(VI)≡N–NR_2] with a hydrazido(2−) ligand to [W^(IV)═N═NR_2] with a neutral 1,1-diazene ligand. The photophysical properties of these complexes highlight the potential redox noninnocence of hydrazido ligands, which could lead to ligand- and/or metal-based redox chemistry in early transition metal derivatives
Synthesis of dense bulk MgB2 by an infiltration and growth process
We report the processing of dense, superconducting MgB2 (2.4 g cm-3) by an infiltration and growth technique. The process, which involves infiltration of liquid magnesium at 750 C into a pre-defined boron precursor pellet, is relatively simple, results in the formation of a hard, dense structure and has the potential to fabricate large bulk samples of complex geometries. X-ray diffraction has been used to confirm the presence of the MgB2 primary phase with only residual magnesium content in the fully processed samples. The samples exhibit sharp superconducting transitions at 38.4 K and have critical current densities of up to 260 kA cm-2 in self-field at 5 K. Modest measured values of Hc2(0) of 17 T suggest that superconductivity in bulk MgB2 fabricated by this technique is in the clean pairing limit
Near-IR Phosphorescence of Iridium(III) Corroles at Ambient Temperature
The photophysical properties of Ir(III) corroles differ from those of phosphorescent porphyrin complexes, cyclometalated and polyimine Ir(III) compounds, and other luminescent metallocorroles. Ir(III) corrole phosphorescence is observed at ambient temperature at wavelengths much longer (>800 nm) than those of most Ir(III) phosphors. The solvatochromic behavior of Ir(III)-corrole Soret and Q absorption bands suggests that the lowest singlet excited states (S2 and S1) are substantially more polar than the ground state
- …
