602 research outputs found

    Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries

    Full text link
    We report on the in-plane magnetic field (H) dependence of the critical current density (Jc) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the planar GB are consistent with those previously seen in single GBs of YBCO films grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The meandered GB does not show vortex channeling since it is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP

    Tris(hydroxypropyl)phosphine Oxide: A Chiral Three-Dimensional Material with Nonlinear Optical Properties

    Get PDF
    The achiral C_(3v) organic phosphine tris(hydroxypropyl)phosphine oxide (1) crystallizes in the unusual chiral hexagonal space group P6_3. The structure is highly ordered because each phosphine oxide moiety forms three hydrogen bonds with adjacent hydroxy groups from three different molecules. The properties of the crystals and the presence of hydrogen bonding interactions were investigated using single crystal Raman spectroscopy. The crystals show nonlinear optical properties and are capable of efficient second harmonic generation

    Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi_{1-x}Ge_{x}

    Full text link
    We report a novel negative magnetocaloric effect in CoMnSi_{1-x}Ge_{x} arising from a metamagnetic magnetoelastic transition. The effect is of relevance to magnetic refrigeration over a wide range of temperature, including room temperature. In addition we report a very high shift in the metamagnetic transition temperature with applied magnetic field. This is driven by competition between antiferromagnetic and ferromagnetic order which can be readily tuned by applied pressure and compositional changes.Comment: 5 pages, 5 figures, REVTeX, submitted to Physical Revie

    Vortex deformation and breaking in superconductors: A microscopic description

    Full text link
    Vortex breaking has been traditionally studied for nonuniform critical current densities, although it may also appear due to nonuniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density JJ for any arbitrary orientation of the transport current and the magnetic field. If JJ is above a certain critical value, JcJ_c, the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2_2Cu3_3O7x_{7-x} (YBCO) low angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension ϵl\epsilon_l and compared it to existing predictions based on the vortex structure.Comment: 11 figures in 13 files; minor changes after printing proof
    corecore