1,361 research outputs found

    Weak-Field Thermal Hall Conductivity in the Mixed State of d-Wave Superconductors

    Full text link
    Thermal transport in the mixed state of a d-wave superconductor is considered within the weak-field regime. We express the thermal conductivity, κxx\kappa_{xx}, and the thermal Hall conductivity, κxy\kappa_{xy}, in terms of the cross section for quasiparticle scattering from a single vortex. Solving for the cross section (neglecting the Berry phase contribution and the anisotropy of the gap nodes), we obtain κxx(H,T)\kappa_{xx}(H,T) and κxy(H,T)\kappa_{xy}(H,T) in surprisingly good agreement with the qualitative features of the experimental results for YBa2_{2}Cu3_{3}O6.99_{6.99}. In particular, we show that the simple, yet previously unexpected, weak-field behavior, κxy(H,T)TH\kappa_{xy}(H,T) \sim T\sqrt{H}, is that of thermally-excited nodal quasiparticles, scattering primarily from impurities, with a small skew component provided by vortex scattering.Comment: 5 pages, 2 figures; final version as published in Phys Rev Let

    Effects of an in-plane magnetic field on c-axis sum rule and superfluid density in high-TcT_{c} cuprates

    Full text link
    In layered cuprates, the application of an in-plane magnetic field (H)({\bf H}) changes the c-axis optical sum rule and superfluid density ρs\rho_{s}. For pure incoherent c-axis coupling, H{\bf H} has no effect on either quantities but it does if an additional coherent component is present. For the coherent contribution, different characteristic variations on H{\bf H} and on temperature result from the constant part (t)(t_{\perp}) of the hopping matrix element and from the part (tϕ)(t_{\phi}) which has zero on the diagonal of the Brillouin zone. Only the constant part (t)(t_{\perp}) leads to a dependence on the direction of H{\bf H} as well as on its magnitude.Comment: 3 figure

    Violation of the Wiedemann-Franz Law in a Large-N Solution of the t-J Model

    Full text link
    We show that the Wiedemann-Franz law, which holds for Landau Fermi liquids, breaks down in a large-n treatment of the t-J model. The calculated ratio of the in-plane thermal and electrical conductivities agrees quantitatively with experiments on the normal state of the electron-doped Pr_{2-x}Ce_xCuO_4 (x = 0.15) cuprate superconductor. The violation of the Wiedemann-Franz law in the uniform phase contrasts with other properties of the phase that are Fermi liquid like.Comment: 4 pages, 2 figures. Typos corrected, one added reference, revised discussion of experiment on 214 cuprate material (x = 0.06

    Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States

    Full text link
    We calculate the current-voltage characteristic of a two-dimensional electron system (2DES) subjected to a magnetic field at strong electric fields. The interaction of electrons with piezoelectric acoustic phonons is considered as a major scattering mechanism governing the current-voltage characteristic. It is shown that at a sufficiently strong electric field corresponding to the Hall drift velocity exceeding the velocity of sound, the dissipative current exhibits an overshoot. The overshoot of the dissipative current can result in a breakdown of the absolute negative conductivity caused by microwave irradiation and, therefore, substantially effect the formation of the domain structures with the zero-resistance and zero-conductance states and supersonic electron streams.Comment: 5 pages, 4 figure

    Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons

    Full text link
    We calculate the contribution of the photon-assisted interaction of electrons with leaky interface phonons to the dissipative dc photoconductivity of a two-dimensional electron system in a magnetic field. The calculated photoconductivity as a function of the frequency of microwave radiation and the magnetic field exhibits pronounced oscillations. The obtained oscillation structure is different from that in the case of photon-assisted interaction with impurities. We demonstrate that at a sufficiently strong microwave radiation in the certain ranges of its frequency (or in certain ranges of the magnetic field) this mechanism can result in the absolute negative conductivity.Comment: 3 pages, 1 figur

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Absolute Negative Conductivity in Two-Dimensional Electron Systems Associated with Acoustic Scattering Stimulated by Microwave Radiation

    Full text link
    We discuss the feasibility of absolute negative conductivity (ANC) in two-dimensional electron systems (2DES) stimulated by microwave radiation in transverse magnetic field. The mechanism of ANC under consideration is associated with the electron scattering on acoustic piezoelectric phonons accompanied by the absorption of microwave photons. It is demonstrated that the dissipative components of the 2DES dc conductivity can be negative (σxx=σyy<0\sigma_{xx} = \sigma_{yy} < 0) when the microwave frequency Ω\Omega is somewhat higher than the electron cyclotron frequency Ωc\Omega_c or its harmonics. The concept of ANC associated with such a scattering mechanism can be invoked to explain the nature of the occurrence of zero-resistance ``dissipationless'' states observed in recent experiments.Comment: 7 pager, 2 figure

    Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors

    Full text link
    The magnetic behavior of insulating doped diluted magnetic semiconductors (DMS) is characterized by the interaction of large collective spins known as bound magnetic polarons. Experimental measurements of the susceptibility of these materials have suggested that the polaron-polaron interaction is ferromagnetic, in contrast to the antiferromagnetic carrier-carrier interactions that are characteristic of nonmagnetic semiconductors. To explain this behavior, a model has been developed in which polarons interact via both the standard direct carrier-carrier exchange interaction (due to virtual carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due to the interactions of polarons with magnetic ions in an interstitial region). Using a variational procedure, the optimal values of the model parameters were determined as a function of temperature. At temperatures of interest, the parameters describing polaron-polaron interactions were found to be nearly temperature-independent. For reasonable values of these constant parameters, we find that indirect ferromagnetic interactions can dominate the direct antiferromagnetic interactions and cause the polarons to align. This result supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure

    Structural Features Underlying Raloxifene’s Biophysical Interaction with Bone Matrix

    Get PDF
    Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen

    Microwave Conductivity due to Scattering from Extended Linear Defects in d-Wave Superconductors

    Full text link
    Recent microwave conductivity measurements of detwinned, high-purity, slightly overdoped YBa2_{2}Cu3_{3}O6.993_{6.993} crystals reveal a linear temperature dependence and a near-Drude lineshape for temperatures between 1 and 20 K and frequencies ranging from 1 to 75 GHz. Prior theoretical work has shown that simple models of scattering by point defects (impurities) in d-wave superconductors are inconsistent with these results. It has therefore been suggested that scattering by extended defects such as twin boundary remnants, left over from the detwinning process, may also be important. We calculate the self-energy and microwave conductivity in the self-consistent Born approximation (including vertex corrections) for a d-wave superconductor in the presence of scattering from extended linear defects. We find that in the experimentally relevant limit (Ω,1/τTΔ0\Omega, 1/\tau \ll T \ll \Delta_{0}), the resulting microwave conductivity has a linear temperature dependence and a near-Drude frequency dependence that agrees well with experiment.Comment: 13 pages, 7 figure
    corecore