1,361 research outputs found
Weak-Field Thermal Hall Conductivity in the Mixed State of d-Wave Superconductors
Thermal transport in the mixed state of a d-wave superconductor is considered
within the weak-field regime. We express the thermal conductivity,
, and the thermal Hall conductivity, , in terms of
the cross section for quasiparticle scattering from a single vortex. Solving
for the cross section (neglecting the Berry phase contribution and the
anisotropy of the gap nodes), we obtain and
in surprisingly good agreement with the qualitative features
of the experimental results for YBaCuO. In particular, we
show that the simple, yet previously unexpected, weak-field behavior,
, is that of thermally-excited nodal
quasiparticles, scattering primarily from impurities, with a small skew
component provided by vortex scattering.Comment: 5 pages, 2 figures; final version as published in Phys Rev Let
Effects of an in-plane magnetic field on c-axis sum rule and superfluid density in high- cuprates
In layered cuprates, the application of an in-plane magnetic field changes the c-axis optical sum rule and superfluid density . For
pure incoherent c-axis coupling, has no effect on either quantities
but it does if an additional coherent component is present. For the coherent
contribution, different characteristic variations on and on
temperature result from the constant part of the hopping matrix
element and from the part which has zero on the diagonal of the
Brillouin zone. Only the constant part leads to a dependence on
the direction of as well as on its magnitude.Comment: 3 figure
Violation of the Wiedemann-Franz Law in a Large-N Solution of the t-J Model
We show that the Wiedemann-Franz law, which holds for Landau Fermi liquids,
breaks down in a large-n treatment of the t-J model. The calculated ratio of
the in-plane thermal and electrical conductivities agrees quantitatively with
experiments on the normal state of the electron-doped Pr_{2-x}Ce_xCuO_4 (x =
0.15) cuprate superconductor. The violation of the Wiedemann-Franz law in the
uniform phase contrasts with other properties of the phase that are Fermi
liquid like.Comment: 4 pages, 2 figures. Typos corrected, one added reference, revised
discussion of experiment on 214 cuprate material (x = 0.06
Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States
We calculate the current-voltage characteristic of a two-dimensional electron
system (2DES) subjected to a magnetic field at strong electric fields. The
interaction of electrons with piezoelectric acoustic phonons is considered as a
major scattering mechanism governing the current-voltage characteristic. It is
shown that at a sufficiently strong electric field corresponding to the Hall
drift velocity exceeding the velocity of sound, the dissipative current
exhibits an overshoot. The overshoot of the dissipative current can result in a
breakdown of the absolute negative conductivity caused by microwave irradiation
and, therefore, substantially effect the formation of the domain structures
with the zero-resistance and zero-conductance states and supersonic electron
streams.Comment: 5 pages, 4 figure
Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons
We calculate the contribution of the photon-assisted interaction of electrons
with leaky interface phonons to the dissipative dc photoconductivity of a
two-dimensional electron system in a magnetic field. The calculated
photoconductivity as a function of the frequency of microwave radiation and the
magnetic field exhibits pronounced oscillations. The obtained oscillation
structure is different from that in the case of photon-assisted interaction
with impurities. We demonstrate that at a sufficiently strong microwave
radiation in the certain ranges of its frequency (or in certain ranges of the
magnetic field) this mechanism can result in the absolute negative
conductivity.Comment: 3 pages, 1 figur
Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices
We examine the radiation induced modification of the Hall effect in high
mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave
excitation. The modification in the Hall effect upon irradiation is
characterized by (a) a small reduction in the slope of the Hall resistance
curve with respect to the dark value, (b) a periodic reduction in the magnitude
of the Hall resistance, , that correlates with an increase in the
diagonal resistance, , and (c) a Hall resistance correction that
disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure
Absolute Negative Conductivity in Two-Dimensional Electron Systems Associated with Acoustic Scattering Stimulated by Microwave Radiation
We discuss the feasibility of absolute negative conductivity (ANC) in
two-dimensional electron systems (2DES) stimulated by microwave radiation in
transverse magnetic field. The mechanism of ANC under consideration is
associated with the electron scattering on acoustic piezoelectric phonons
accompanied by the absorption of microwave photons. It is demonstrated that the
dissipative components of the 2DES dc conductivity can be negative
() when the microwave frequency is
somewhat higher than the electron cyclotron frequency or its
harmonics. The concept of ANC associated with such a scattering mechanism can
be invoked to explain the nature of the occurrence of zero-resistance
``dissipationless'' states observed in recent experiments.Comment: 7 pager, 2 figure
Bound Magnetic Polaron Interactions in Insulating Doped Diluted Magnetic Semiconductors
The magnetic behavior of insulating doped diluted magnetic semiconductors
(DMS) is characterized by the interaction of large collective spins known as
bound magnetic polarons. Experimental measurements of the susceptibility of
these materials have suggested that the polaron-polaron interaction is
ferromagnetic, in contrast to the antiferromagnetic carrier-carrier
interactions that are characteristic of nonmagnetic semiconductors. To explain
this behavior, a model has been developed in which polarons interact via both
the standard direct carrier-carrier exchange interaction (due to virtual
carrier hopping) and an indirect carrier-ion-carrier exchange interaction (due
to the interactions of polarons with magnetic ions in an interstitial region).
Using a variational procedure, the optimal values of the model parameters were
determined as a function of temperature. At temperatures of interest, the
parameters describing polaron-polaron interactions were found to be nearly
temperature-independent. For reasonable values of these constant parameters, we
find that indirect ferromagnetic interactions can dominate the direct
antiferromagnetic interactions and cause the polarons to align. This result
supports the experimental evidence for ferromagnetism in insulating doped DMS.Comment: 11 pages, 7 figure
Structural Features Underlying Raloxifene’s Biophysical Interaction with Bone Matrix
Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure–activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen
Microwave Conductivity due to Scattering from Extended Linear Defects in d-Wave Superconductors
Recent microwave conductivity measurements of detwinned, high-purity,
slightly overdoped YBaCuO crystals reveal a linear
temperature dependence and a near-Drude lineshape for temperatures between 1
and 20 K and frequencies ranging from 1 to 75 GHz. Prior theoretical work has
shown that simple models of scattering by point defects (impurities) in d-wave
superconductors are inconsistent with these results. It has therefore been
suggested that scattering by extended defects such as twin boundary remnants,
left over from the detwinning process, may also be important. We calculate the
self-energy and microwave conductivity in the self-consistent Born
approximation (including vertex corrections) for a d-wave superconductor in the
presence of scattering from extended linear defects. We find that in the
experimentally relevant limit (), the
resulting microwave conductivity has a linear temperature dependence and a
near-Drude frequency dependence that agrees well with experiment.Comment: 13 pages, 7 figure
- …
