1,699 research outputs found
Scattering states of a vortex in the proximity-induced superconducting state at the interface of a topological insulator and an s-wave superconductor
We consider an isolated vortex in the two-dimensional proximity-induced
superconducting state formed at the interface of a three-dimensional strong
topological insulator (TI) and an s-wave superconductor (sSC). Prior
calculations of the bound states of this system famously revealed a zero-energy
state that is its own conjugate, a Majorana fermion bound to the vortex core.
We calculate, not the bound states, but the scattering states of this system,
and ask how the spin-momentum-locked massless Dirac form of the single-particle
Hamiltonian, inherited from the TI surface, affects the cross section for
scattering Bogoliubov quasiparticles from the vortex. As in the case of an
ordinary superconductor, this is a two-channel problem with the vortex mixing
particle-like and hole-like excitations. And as in the ordinary case, the
same-channel differential cross section diverges in the forward direction due
to the Aharonov-Bohm effect, resulting in an infinite total cross section but
finite transport and skew cross sections. We calculate the transport and skew
cross sections numerically, via a partial wave analysis, as a function of both
quasiparticle excitation energy and chemical potential. Novel effects emerge as
particle-like or hole-like excitations are tuned through the Dirac point.Comment: 16 pages, 7 figures; modified title, improved figures, as published
in PR
Disorder-induced density of states on the surface of a spherical topological insulator
We consider a topological insulator (TI) of spherical geometry and
numerically investigate the influence of disorder on the density of surface
states. To the clean Hamiltonian we add a surface disorder potential of the
most general hermitian form, . We expand these four disorder functions in spherical harmonics
and draw the expansion coefficients randomly from a four-dimensional, zero-mean
gaussian distribution. Different strengths and classes of disorder are realized
by specifying the covariance matrix. For each instantiation of the
disorder, we solve for the energy spectrum via exact diagonalization. Then we
compute the disorder-averaged density of states, , by averaging over
200,000 different instantiations. Disorder broadens the Landau-level delta
functions of the clean density of states into peaks that decay and merge
together. If the spin-dependent term is dominant, these peaks split due to the
breaking of the degeneracy between time-reversed partner states. Increasing
disorder strength pushes states closer and closer to zero energy (the Dirac
point), resulting in a low-energy density of states that becomes nonzero for
sufficient disorder, typically approaching an energy-independent saturation
value, for most classes of disorder. But for purely spin-dependent disorder
with either entirely out-of-surface or entirely in-surface, we
identify intriguing disorder-induced features in the vicinity of the Dirac
point. In the out-of-surface case, a new peak emerges at zero energy. In the
in-surface case, we see a symmetry-protected zero at zero energy, with
increasing linearly toward nonzero-energy peaks. These striking
features are explained in terms of the breaking (or not) of two chiral
symmetries of the clean Hamiltonian.Comment: 14 pages, 11 figure
Quasiparticle scattering from vortices in d-wave superconductors I: Superflow contribution
In the vortex state of a d-wave superconductor, massless Dirac quasiparticles
are scattered from magnetic vortices via a combination of two basic mechanisms:
effective potential scattering due to the superflow swirling about the vortices
and Aharonov-Bohm scattering due to the Berry phase acquired by a quasiparticle
upon circling a vortex. In this paper, we study the superflow contribution by
calculating the differential cross section for a quasiparticle scattering from
the effective non-central potential of a single vortex. We solve the massless
Dirac equation in polar coordinates and obtain the cross section via a partial
wave analysis. We also present a more transparent Born-limit calculation and in
this approximation we provide an analytic expression for the differential cross
section. The Berry phase contribution to the quasiparticle scattering is
considered in a separate paper.Comment: 22 pages, 6 figure
Heitler-London model for acceptor-acceptor interactions in doped semiconductors
The interactions between acceptors in semiconductors are often treated in
qualitatively the same manner as those between donors. Acceptor wave functions
are taken to be approximately hydrogenic and the standard hydrogen molecule
Heitler-London model is used to describe acceptor-acceptor interactions. But
due to valence band degeneracy and spin-orbit coupling, acceptor states can be
far more complex than those of hydrogen atoms, which brings into question the
validity of this approximation. To address this issue, we develop an
acceptor-acceptor Heitler-London model using single-acceptor wave functions of
the form proposed by Baldereschi and Lipari, which more accurately capture the
physics of the acceptor states. We calculate the resulting acceptor-pair energy
levels and find, in contrast to the two-level singlet-triplet splitting of the
hydrogen molecule, a rich ten-level energy spectrum. Our results, computed as a
function of inter-acceptor distance and spin-orbit coupling strength, suggest
that acceptor-acceptor interactions can be qualitatively different from
donor-donor interactions, and should therefore be relevant to the control of
two-qubit interactions in acceptor-based qubit implementations, as well as the
magnetic properties of a variety of p-doped semiconductor systems. Further
insight is drawn by fitting numerical results to closed-form energy-level
expressions obtained via an acceptor-acceptor Hubbard model.Comment: 19 pages, 10 figures, text revised, figure quality improved,
additional references adde
Quasiparticle scattering from vortices in d-wave superconductors. II. Berry phase contribution
In the mixed state of a d-wave superconductor, Bogoliubov quasiparticles are
scattered from magnetic vortices via a combination of two effects:
Aharonov-Bohm scattering due to the Berry phase acquired by a quasiparticle
upon circling a vortex, and effective potential scattering due to the superflow
swirling about the vortices. In this paper, we consider the Berry phase
contribution in the absence of superflow, which results in branch cuts between
neighboring vortices across which the quasiparticle wave function changes sign.
Here, the simplest problem that captures the physics is that of scattering from
a single finite branch cut that stretches between two vortices. Elliptical
coordinates are natural for this two-center problem, and we proceed by
separating the massless Dirac equation in elliptical coordinates. The separated
equations take the form of the Whittaker-Hill equations, which we solve to
obtain radial and angular eigenfunctions. With these eigenfunctions in hand, we
construct the scattering cross section via partial wave analysis. We discuss
the scattering effect of Berry phase in the absence of superflow, having
considered the superflow effect in the absence of Berry phase in a separate
paper. We also provide qualitative comparison of transport cross sections for
the Berry phase and the Superflow effects. The important issue of interference
between the two effects is left to future work.Comment: 29 pages, 7 figures, New results and discussion adde
Weak-Field Thermal Hall Conductivity in the Mixed State of d-Wave Superconductors
Thermal transport in the mixed state of a d-wave superconductor is considered
within the weak-field regime. We express the thermal conductivity,
, and the thermal Hall conductivity, , in terms of
the cross section for quasiparticle scattering from a single vortex. Solving
for the cross section (neglecting the Berry phase contribution and the
anisotropy of the gap nodes), we obtain and
in surprisingly good agreement with the qualitative features
of the experimental results for YBaCuO. In particular, we
show that the simple, yet previously unexpected, weak-field behavior,
, is that of thermally-excited nodal
quasiparticles, scattering primarily from impurities, with a small skew
component provided by vortex scattering.Comment: 5 pages, 2 figures; final version as published in Phys Rev Let
- …
