2,127 research outputs found
An Appraisal of Muon Neutrino Disappearance at Short Baseline
Neutrino physics is nowadays receiving more and more attention as a possible
source of information for the long standing problem of new Physics beyond the
Standard Model. The recent measurements of the third mixing angle
in the standard mixing oscillation scenario encourage to pursue the still
missing results on the leptonic CP violation and the absolute neutrino masses.
However, several puzzling and incomplete measurements are in place which
deserve an exhaustive evaluation and study. We will report about the present
situation of the muon disappearance measurements at small in the context
of the current CERN project to revitalize the neutrino field in Europe and the
search for sterile neutrinos. We will then illustrate the achievements that a
double muon spectrometer can attain in terms of discovery of new neutrino
states, performing a newly developed analysis.Comment: 19 pages, 8 figures, to be published in "Advances in High Energy
Physics
Totem: a case study in HEP
It is being proved that the neurochip \Totem{} is a viable solution for high
quality and real time computational tasks in HEP, including event
classification, triggering and signal processing. The architecture of the chip
is based on a "derivative free" algorithm called Reactive Tabu Search (RTS),
highly performing even for low precision weights. ISA, VME or PCI boards
integrate the chip as a coprocessor in a host computer. This paper presents: 1)
the state of the art and the next evolution of the design of \Totem{}; 2) its
ability in the Higgs search at LHC as an example.Comment: Latex, elsart.sty, 5 pages, talk presented by I.Lazzizzera at CHEP97
(Berlin, April 1997
CP violation and mass hierarchy at medium baselines in the large theta(13) era
The large value of theta(13) recently measured by rector and accelerator
experiments opens unprecedented opportunities for precision oscillation
physics. In this paper, we reconsider the physics reach of medium baseline
superbeams. For theta(13) ~ 9 degree we show that facilities at medium
baselines -- i.e. L ~ O(1000 km) -- remain optimal for the study of CP
violation in the leptonic sector, although their ultimate precision strongly
depends on experimental systematics. This is demonstrated in particular for
facilities of practical interest in Europe: a CERN to Gran Sasso and CERN to
Phyasalmi nu_mu beam based on the present SPS and on new high power 50 GeV
proton driver. Due to the large value of theta(13), spectral information can be
employed at medium baselines to resolve the sign ambiguity and determine the
neutrino mass hierarchy. However, longer baselines, where matter effects
dominate the nu_mu->nu_e transition, can achieve much stronger sensitivity to
sign(Delta m^2) even at moderate exposures.Comment: 14 pages, 14 figures, version to appear in EPJ
On the High-Temperature Behaviour of the Closed Superstring
The high-temperature expansion for closed superstring one-loop free energy is
studied. The Laurent series representation is obtained and its sum is
analytically continued in order to investigate the nature of the critical
(Hagedorn) temperature. It is found that beyond this critical temperature the
statistical sum contribution of the free energy is finite but has an imaginary
part, signalling a possible metastability of the system.Comment: 7 pages, UTF32
Searching the Higgs with the Neurochip TOTEM
We show that neural network classifiers can be helpful in discriminating
Higgs production events from the huge background at LHC, assuming the case of a
mass value GeV. We use the high performance neurochip TOTEM,
trained by the Reactive Tabu Search algorithm (RTS), which could be used for
on-line purposes. Two different sets of input variables are compared.Comment: 4 pages,1 figure, requres espcrc2.sty and epsfig.sty. Work prsented
in The 5th Topical Seminar on ``The irresistible rise of the Standard
Model'', San Miniato, Tuscany, Italy, April 21-25 199
The OPERA magnetic spectrometer
The OPERA neutrino oscillation experiment foresees the construction of two
magnetized iron spectrometers located after the lead-nuclear emulsion targets.
The magnet is made up of two vertical walls of rectangular cross section
connected by return yokes. The particle trajectories are measured by high
precision drift tubes located before and after the arms of the magnet.
Moreover, the magnet steel is instrumented with Resistive Plate Chambers that
ease pattern recognition and allow a calorimetric measurement of the hadronic
showers. In this paper we review the construction of the spectrometers. In
particular, we describe the results obtained from the magnet and RPC prototypes
and the installation of the final apparatus at the Gran Sasso laboratories. We
discuss the mechanical and magnetic properties of the steel and the techniques
employed to calibrate the field in the bulk of the magnet. Moreover, results of
the tests and issues concerning the mass production of the Resistive Plate
Chambers are reported. Finally, the expected physics performance of the
detector is described; estimates rely on numerical simulations and the outcome
of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference,
Portland, OR, USA, October 20-24, 200
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
Recommended from our members
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution
The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a
satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A
ton-level liquid scintillator detector will be placed at about 30 m from a core
of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be
measured with sub-percent energy resolution, to provide a reference spectrum
for future reactor neutrino experiments, and to provide a benchmark measurement
to test nuclear databases. A spherical acrylic vessel containing 2.8 ton
gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon
Photomultipliers (SiPMs) of >50% photon detection efficiency with almost full
coverage. The photoelectron yield is about 4500 per MeV, an order higher than
any existing large-scale liquid scintillator detectors. The detector operates
at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The
detector will measure about 2000 reactor antineutrinos per day, and is designed
to be well shielded from cosmogenic backgrounds and ambient radioactivities to
have about 10% background-to-signal ratio. The experiment is expected to start
operation in 2022
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
Observation of nu_tau appearance in the CNGS beam with the OPERA experiment
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in
appearance mode i.e. via the direct detection of tau leptons in nu_tau charged
current interactions. The evidence of nu_mu -> nu_tau appearance has been
previously reported with three nu_tau candidate events using a sub-sample of
data from the 2008-2012 runs. We report here a fourth nu_tau candidate event,
with the tau decaying into a hadron, found after adding the 2012 run events
without any muon in the final state to the data sample. Given the number of
analysed events and the low background, nu_mu -> nu_tau oscillations are
established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP
- …
