103,145 research outputs found
Emergent Phase Space Description of Unitary Matrix Model
We show that large phases of a dimensional generic unitary matrix
model (UMM) can be described in terms of topologies of two dimensional droplets
on a plane spanned by eigenvalue and number of boxes in Young diagram.
Information about different phases of UMM is encoded in the geometry of
droplets. These droplets are similar to phase space distributions of a unitary
matrix quantum mechanics (UMQM) ( dimensional) on constant time
slices. We find that for a given UMM, it is possible to construct an effective
UMQM such that its phase space distributions match with droplets of UMM on
different time slices at large . Therefore, large phase transitions in
UMM can be understood in terms of dynamics of an effective UMQM. From the
geometry of droplets it is also possible to construct Young diagrams
corresponding to representations and hence different large states of
the theory in momentum space. We explicitly consider two examples : single
plaquette model with terms and Chern-Simons theory on . We
describe phases of CS theory in terms of eigenvalue distributions of unitary
matrices and find dominant Young distributions for them.Comment: 52 pages, 15 figures, v2 Introduction and discussions extended,
References adde
Schwinger-Dyson approach to Liouville Field Theory
We discuss Liouville field theory in the framework of Schwinger-Dyson
approach and derive a functional equation for the three-point structure
constant. We argue the existence of a second Schwinger-Dyson equation on the
basis of the duality between the screening charge operators and obtain a second
functional equation for the structure constant. We discuss the utility of the
two functional equations to fix the structure constant uniquely
- …
