3,038 research outputs found
Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors
The advantages of light and matter-wave Sagnac interferometers -- large area
on one hand and high rotational sensitivity per unit area on the other -- can
be combined utilizing ultra-slow light in cold atomic gases. While a
group-velocity reduction alone does not affect the Sagnac phase shift, the
associated momentum transfer from light to atoms generates a coherent
matter-wave component which gives rise to a substantially enhanced rotational
signal. It is shown that matter-wave sensitivity in a large-area interferometer
can be achieved if an optically dense vapor at sub-recoil temperatures is used.
Already a noticeable enhancement of the Sagnac phase shift is possible however
with much less cooling requirements.Comment: 4 pages, 3 figure
QuickXsort: Efficient Sorting with n log n - 1.399n +o(n) Comparisons on Average
In this paper we generalize the idea of QuickHeapsort leading to the notion
of QuickXsort. Given some external sorting algorithm X, QuickXsort yields an
internal sorting algorithm if X satisfies certain natural conditions.
With QuickWeakHeapsort and QuickMergesort we present two examples for the
QuickXsort-construction. Both are efficient algorithms that incur approximately
n log n - 1.26n +o(n) comparisons on the average. A worst case of n log n +
O(n) comparisons can be achieved without significantly affecting the average
case.
Furthermore, we describe an implementation of MergeInsertion for small n.
Taking MergeInsertion as a base case for QuickMergesort, we establish a
worst-case efficient sorting algorithm calling for n log n - 1.3999n + o(n)
comparisons on average. QuickMergesort with constant size base cases shows the
best performance on practical inputs: when sorting integers it is slower by
only 15% to STL-Introsort
The synthesis and structure of an n-terminal dodecanoic acid conjugate of a-conotoxin MII
The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct
Vibrational properties of phonons in random binary alloys: An augmented space recursive technique in the k-representation
We present here an augmented space recursive technique in the
k-representation which include diagonal, off-diagonal and the environmental
disorder explicitly : an analytic, translationally invariant, multiple
scattering theory for phonons in random binary alloys.We propose the augmented
space recursion (ASR) as a computationally fast and accurate technique which
will incorporate configuration fluctuations over a large local environment. We
apply the formalism to , Ni_{88}Cr_12} and
alloys which is not a random choice. Numerical results on spectral functions,
coherent structure factors, dispersion curves and disordered induced FWHM's are
presented. Finally the results are compared with the recent itinerant coherent
potential approximation (ICPA) and also with experiments.Comment: 20 pages, LaTeX, 23 figure
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy
Superconducting persistent-current qubits are quantum-coherent artificial
atoms with multiple, tunable energy levels. In the presence of large-amplitude
harmonic excitation, the qubit state can be driven through one or more of the
constituent energy-level avoided crossings. The resulting
Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of
quantum-coherent phenomena. We review here three experimental works based on
LZS transitions: Mach-Zehnder-type interferometry between repeated LZS
transitions, microwave-induced cooling, and amplitude spectroscopy. These
experiments exhibit a remarkable agreement with theory, and are extensible to
other solid-state and atomic qubit modalities. We anticipate they will find
application to qubit state-preparation and control methods for quantum
information science and technology.Comment: 13 pages, 5 figure
IMAGES-III: The evolution of the Near-Infrared Tully-Fisher relation over the last 6 Gyr
Using the multi-integral field spectrograph GIRAFFE at VLT, we have derived
the K-band Tully-Fisher relation (TFR) at z~0.6 for a representative sample of
65 galaxies with emission lines. We confirm that the scatter in the z~0.6 TFR
is caused by galaxies with anomalous kinematics, and find a positive and strong
correlation between the complexity of the kinematics and the scatter that they
contribute to the TFR. Considering only relaxed-rotating disks, the scatter,
and possibly also the slope of the TFR, do not appear to evolve with z. We
detect an evolution of the K-band TFR zero point between z~0.6 and z=0, which,
if interpreted as an evolution of the K-band luminosity of rotating disks,
would imply that a brightening of 0.66+/-0.14 mag occurs between z~0.6 and z=0.
Any disagreement with the results of Flores et al. (2006) are attributed to
both an improvement of the local TFR and the more detailed accurate measurement
of the rotation velocities in the distant sample. Most of the uncertainty can
be explained by the relatively coarse spatial-resolution of the kinematical
data. Because most rotating disks at z~0.6 are unlikely to experience further
merging events, one may assume that their rotational velocity does not evolve
dramatically. If true, our result implies that rotating disks observed at z~0.6
are rapidly transforming their gas into stars, to be able to double their
stellar masses and be observed on the TFR at z=0. The rotating disks observed
are indeed emission-line galaxies that are either starbursts or LIRGs, which
implies that they are forming stars at a high rate. Thus, a significant
fraction of the rotating disks are forming the bulk of their stars within 6 to
8 Gyr, in good agreement with former studies of the evolution of the M-Z
relation.Comment: 17 pages, 11 figures, accepted for publication in A&A. v2 taking into
account comments from language edito
Conserving biodiversity in production landscapes
Alternative land uses make different contributions to the conservation of biodiversity and have different implementation and management costs. Conservation planning analyses to date have generally assumed that land is either protected or unprotected and that the unprotected portion does not contribute to conservation goals. We develop and apply a new planning approach that explicitly accounts for the contribution of a diverse range of land uses to achieving conservation goals. Using East Kalimantan (Indonesian Borneo) as a case study, we prioritize investments in alternative conservation strategies and account for the relative contribution of land uses ranging from production forest to well-managed protected areas. We employ data on the distribution of mammals and assign species-specific conservation targets to achieve equitable protection by accounting for life history characteristics and home range sizes. The relative sensitivity of each species to forest degradation determines the contribution of each land use to achieving targets. We compare the cost effectiveness of our approach to a plan that considers only the contribution of protected areas to biodiversity conservation, and to a plan that assumes that the cost of conservation is represented by only the opportunity costs of conservation to the timber industry. Our preliminary results will require further development and substantial stakeholder engagement prior to implementation; nonetheless we reveal that, by accounting for the contribution of unprotected land, we can obtain more refined estimates of the costs of conservation. Using traditional planning approaches would overestimate the cost of achieving the conservation targets by an order of magnitude. Our approach reveals not only where to invest, but which strategies to invest in, in order to effectively and efficiently conserve biodiversity. Copyright ESA. All rights reserved
- …
