5,472 research outputs found

    Galaxy alignment on large and small scales

    Full text link
    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations

    Get PDF
    We investigate the effect of inter-atomic interactions on the quantum-mechanical reflection of Bose-Einstein condensates from regions of rapid potential variation. The reflection process depends critically on the density and incident velocity of the condensate. For low densities and high velocities, the atom cloud has almost the same form before and after reflection. Conversely, at high densities and low velocities, the reflection process generates solitons and vortex rings that fragment the condensate. We show that this fragmentation can explain the anomalously low reflection probabilities recently measured for low-velocity condensates incident on a silicon surface.Comment: 5 figures, 5 pages, references correcte

    Descreening of Field Effect in Electrically Gated Nanopores

    Full text link
    This modeling work investigates the electrical modulation characteristics of field-effect gated nanopores. Highly nonlinear current modulations are observed in nanopores with non-overlapping electric double layers, including those with pore diameters 100 times the Debye screening length. We attribute this extended field-effect gating to a descreening effect, i.e. the counter-ions do not fully relax to screen the gating potential due to the presence of strong ionic transport

    Probing Decoherence with Electromagnetically Induced Transparency in Superconductive Quantum Circuits

    Full text link
    Superconductive quantum circuits (SQCs) comprise quantized energy levels that may be coupled via microwave electromagnetic fields. Described in this way, one may draw a close analogy to atoms with internal (electronic) levels coupled by laser light fields. In this Letter, we present a superconductive analog to electromagnetically induced transparency (S-EIT) that utilizes SQC designs of present day experimental consideration. We discuss how S-EIT can be used to establish macroscopic coherence in such systems and, thereby, utilized as a sensitive probe of decoherence.Comment: 5 pages, 3 figure

    Creation of solitons and vortices by Bragg reflection of Bose-Einstein condensates in an optical lattice

    Get PDF
    We study the dynamics of Bose-Einstein condensates in an optical lattice and harmonic trap. The condensates are set in motion by displacing the trap and initially follow simple semiclassical paths, shaped by the lowest energy band. Above a critical displacement, the condensate undergoes Bragg reflection. For high atom densities, the first Bragg reflection generates a train of solitons and vortices, which destabilize the condensate and trigger explosive expansion. At lower densities, soliton and vortex formation requires multiple Bragg reflections, and damps the center-of-mass motion.Comment: 5 pages including 5 figures (for higher resolution figures please email the authors

    A Roadmap for Interdisciplinary Research on the Internet of Things

    No full text
    In mid-2011, the Technology Strategy Board started an integrated programme of work focused on the Internet of Things (IoT), which included strategic investment and the establishment of a Special Interest Group aimed at building and engaging a UK community of innovators and researchers in the IoT. As the portfolio of activities with businesses, academics and other stakeholders progressed, it became apparent to us that the community had a keen interest in taking a more concerted and deeper look at the fundamental research issues in the IoT and that a more interdisciplinary approach was needed.Responding to this level of interest, the Technology Strategy Board joined forces with the Arts and Humanities Research Council, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council and the Research Councils UK Digital Economy Programme and agreed to collaborate on an interdisciplinary R&D roadmapping activity, arguably the first of its kind in the UK. The activity, led by Professors Rahim Tafazolli, Hamid Aghvami, Rachel Cooper, William Dutton and Dr Colin Upstill brought together insight from a wide group of leaders and culminated in a two-day ‘meeting of minds’ in Loughborough on 11 and 12 July 2012. This report summarises the outcomes of the activity and makes important wide-ranging recommendations
    corecore