1,012 research outputs found
Holevo's bound from a general quantum fluctuation theorem
We give a novel derivation of Holevo's bound using an important result from
nonequilibrium statistical physics, the fluctuation theorem. To do so we
develop a general formalism of quantum fluctuation theorems for two-time
measurements, which explicitly accounts for the back action of quantum
measurements as well as possibly non-unitary time evolution. For a specific
choice of observables this fluctuation theorem yields a measurement-dependent
correction to the Holevo bound, leading to a tighter inequality. We conclude by
analyzing equality conditions for the improved bound.Comment: 5 page
215 THE CHROMATIN MODIFYING ENZYME SIRT1 REPRESSES THE ARTHRITIS-ASSOCIATED MMP13 EXPRESSION IN HUMAN ARTICULAR CHONDROCYTES
Network Physiology reveals relations between network topology and physiological function
The human organism is an integrated network where complex physiologic
systems, each with its own regulatory mechanisms, continuously interact, and
where failure of one system can trigger a breakdown of the entire network.
Identifying and quantifying dynamical networks of diverse systems with
different types of interactions is a challenge. Here, we develop a framework to
probe interactions among diverse systems, and we identify a physiologic
network. We find that each physiologic state is characterized by a specific
network structure, demonstrating a robust interplay between network topology
and function. Across physiologic states the network undergoes topological
transitions associated with fast reorganization of physiologic interactions on
time scales of a few minutes, indicating high network flexibility in response
to perturbations. The proposed system-wide integrative approach may facilitate
the development of a new field, Network Physiology.Comment: 12 pages, 9 figure
Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier
Android OS is one of the most popular operating systems worldwide, making it a desirable target for malware attacks. Some of the latest and most important defensive systems are based on machine learning (ML) and cybercriminals continuously search for ways to overcome the barriers posed by these systems. Thus, the focus of this work is on evasion attacks in the attempt to show the weaknesses of state of the art research and how more resilient systems can be built. Evasion attacks consist of manipulating either the actual malicious application (problem-based) or its extracted feature vector (feature-based), to avoid being detected by ML systems. This study presents a set of innovative problem-based evasion attacks against well-known Android malware detection systems, which decrease their detection rate by up to 97%. Moreover, an analysis of the effectiveness of these attacks against VirusTotal (VT) scanners was conducted, empirically showing their efficiency against well-known scanners (e.g., McAfee and Comodo) as well. The VT system proved to be a great candidate for the attacks, as in 98% of the apps, less scanners detected the manipulated apps than the original malicious apps. As not all the attacks are effective in the same manner against the VT scanners, the attack efficiency classifiers are advised. Each classifier predicts the applicability of one of the attacks. The set of classifiers creates an ensemble, which shows high success rates, allowing the attacker to decide which attack is best to use for each malicious app and defense system
Clobetasol 17-Propionate Cream as an Effective Preventive Treatment for Drug Induced Superficial Thrombophlebitis
Commonly used therapies for thrombophlebitis have a high failure rate. There are scant data on the application of topical corticosteroids to treat thrombophlebitis. The present study investigated if the potent topical corticosteroid clobetasol 17-propionate cream (Dermovate, Glaxo Wellcome) can be an effective treatment for drug-induced thrombophlebitis. DP-b99, a neuroprotective agent currently undergoing development for acute stroke, can cause injectionsite phlebitis. DP-b99 was administered at doses of 1 and 2 mg/kg by a 1 hour intravenous infusion into the lateral ear vein of groups of 6 and 5 rabbits, respectively. Each rabbit served as its own control by injecting both ears with DP-b99, while treating only one ear with clobetasol cream immediately after treatment, with subsequent applications twice daily for 3 days. Phlebitis was evaluated 1, 3, 5, 24, 32, 48, 56 and 72 hours after DP-b99 treatment using a clinical score ranging from 0 (no reaction) to 4. After 3 days the rabbits were sacrificed for histological analysis of the ears. The phlebitis score was highest at 24 hours. Clobetasol treatment reduced the clinical scores at all time points and shortened the course of phlebitis. Maximal effect was observed 24-48 hours after the first application of clobetasol cream. Histologically, there were fewer cases of thrombophlebitis in the clobetasoltreated ears, and those seen were milder and more focal. To the best of the authors’ knowledge this appears to be the only study to report a phlebitis-ameliorating effect of a topical corticosteroid.
Transcatheter aortic valve implantation in failed bioprosthetic surgical valves.
IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed.
OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves.
DESIGN, SETTING, AND PARTICIPANTS: Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves.
MAIN OUTCOMES AND MEASURES: Survival, stroke, and New York Heart Association functional class.
RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008).
CONCLUSIONS AND RELEVANCE: In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis
Can Charisma Be Taught? Tests of Two Interventions
We tested whether we could teach individuals to behave more charismatically, andwhether changes in charisma affected leader outcomes. In Study 1, a mixed-design fieldexperiment, we randomly assigned 34 middle-level managers to a control or anexperimental group. Three months later, we reassessed the managers using theircoworker ratings (Time 1 raters = 343; Time 2 raters = 321). In Study 2, a within-subjectslaboratory experiment, we videotaped 41 MBA participants giving a speech. We thentaught them how to behave more charismatically, and they redelivered the speech6 weeks later. Independent assessors (n = 135) rated the speeches. Results from thestudies indicated that the training had significant effects on ratings of leader charisma(mean D = .62) and that charisma had significant effects on ratings of leaderprototypicality and emergence...............................................................................................................................
Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators
We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework are the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell–cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity.United States. Army Research Office. Institute for Soldier NanotechnologiesNational Institutes of Health (U.S.) (HL092836)National Institutes of Health (U.S.) (EB02597)National Institutes of Health (U.S.) (AR057837)National Institutes of Health (U.S.) (HL099073)National Science Foundation (U.S.) (DMR0847287)United States. Office of Naval Research (ONR PECASE Award)United States. Office of Naval Research (Young Investigator award)National Research Foundation of Korea (grant (NRF-2010-220-D00014)
- …
