34 research outputs found
AJBR1110004
Abstract: High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein, which functions as Damage Associated Molecular Pattern molecule (DAMP) when released from cells under conditions of stress, such as injury and infection. Recent studies indicate that HMGB1 plays an important role in leukemia pathogenesis and chemotherapy resistance. Serum HMGB1 is increased in childhood acute lymphocytic leukemia as compared to healthy control and complete remission groups. Moreover, HMGB1 is a negative regulator of apoptosis in leukemia cells through regulation of Bcl-2 expression and caspase-3 activity. As a positive regulator of autophagy, intracellular HMGB1 interacts with Beclin 1 in leukemia cells leading to autophagosome formation. Additionally, exogenous HMGB1 directly induces autophagy and cell survival in leukemia cells. Experimental strategies that selectively target HMGB1 effectively reverse and prevent chemotherapy resistance in leukemia cells, suggesting that HMGB1 is a novel therapeutic target in leukemia
ajcr0000123f
Abstract: Breast cancer occurs at a high frequency in women and, given this fact, a primary focus of breast cancer research has been the study of estrogen receptor α (ER) signaling. However, androgens are known to play a role in normal breast physiology and therefore androgen receptor (AR) signaling is becoming increasingly recognized as an important contributor towards breast carcinogenesis. Moreover, the high frequency of AR expression in breast cancer makes it an attractive therapeutic target, but the ability to exploit AR for therapy has been difficult. Here we review the historical use of androgen/anti-androgen therapies in breast cancer, the challenges of accurately modeling nuclear hormone receptor signaling in vitro, and the presence and prognostic significance of AR in breast cancer
AJCD1105001
Abstract: Periodontitis is a bacterially-induced, localized chronic inflammatory disease destroying both the connective tissue and the supporting bone of the teeth. In the general population, severe forms of the disease demonstrate a prevalence of almost 5%, whereas initial epidemiological evidence suggests an association between periodontitis and coronary artery disease (CAD). Both the infectious nature of periodontitis and the yet etiologically unconfirmed infectious hypothesis of CAD, question their potential association. Ephemeral bacteremia, systemic inflammation and immune-pathological reactions constitute a triad of mechanisms supporting a cross-talk between periodontal and vascular damage. To which extent each of these periodontitis-mediated components contribute to vascular damage still remains uncertain. More than twenty years from the initial epidemiological association, the positive weight of evidence remains still alive but rather debated, because of both the presence of many uncontrolled confounding factors and the different assessment of periodontal disease. From the clinical point of view, advising periodontal prevention or treatment targeting on the prevention of CAD it is unjustified. By contrast, oral hygiene including periodontal health might contribute to the overall well-being and healthy lifestyle and hence as might at least partially contribute to cardiovascular prevention
ajcr0000117b
Abstract: Cancer is a genetic disease, grows exponentially with the development of intrinsic and acquired treatment resistance. Past decade has witnessed a considerable progress towards the treatment and understanding of proposed hallmarks of cancer and together with advances in early detection and various treatment modalities. Radiation therapy is an integral part of cancer treatment armamentarium. In developed countries more than half of all cancer patients receive radiation therapy during their course of illness. Although radiation damages both cancer and normal cells, the goal of radiation therapy is to maximize the radiation dose to abnormal cancer cells while minimizing exposure to normal cells, which is adjacent to cancer cells or in the path of radiation. In recent years, life expectancy increases among cancer patients and this increase is due to the results of early diagnosis, screening efforts, improved treatments and with less late effects mostly secondary cancer development. Therefore, cancer survivorship issues have been gaining prominence in the area of radiation oncology research. Understanding the tradeoff between the expected decreases in normal tissue toxicity resulting from an improved radiation dose distribution to the targeted site is an increasingly pertinent, yet needed attention and research in the area of radiation oncology. In recent years, a number of potential molecular targets that involve either with radiation increased tumor cell killing or protecting normal cells have been identified. For clinical benefits, translating these findings to maximize the toxicity of radiation on tumor cells while safeguarding early or late normal cell toxicities using molecular targeted radioprotectors will be useful in radiation treatment
ajcr0000112d
Abstract: Epithelial ovarian cancer is a malignancy with high rate of death due to an advanced disease at diagnosis and frequent relapse after chemotherapy. Nowadays, there is a lack of knowledge for clear risk factors and predictive and/or prognostic genetic markers although genomic alterations such as mutations in p53, PTEN, BRCA1/BRCA2, HER2, KRAS and PI3K genes have been associated to this pathology. A genomic variant in the 3' untraslated region of cancer related gene KRAS, is able to disrupt the let-7 miRNA binding site. The SNP, commonly named KRAS-LCS6, determines the substitution of the more abundant T-allele to a G-allele which was observed to increase the KRAS expression and in turn to activate the downstream pathway at higher levels if compared to the T-allele. In this study we assessed the role of the KRAS-LCS6 polymorphism (rs61764370) in 97 early (stages I and II) and 232 advanced (stages III and IV) ovarian cancer patients in order to associate this SNP to any physiopathological characteristic of the patients cohort, including progression free survival and overall survival, with a follow up data longer than ten years. Our data indicate that KRAS-LCS6 polymorphism is not relevant in ovarian cancer, in fact, in our cohort of patients, is not associated to any outcome or physiopathological characteristic
IJPPP1112002
Abstract: The renin-angiotensin system (RAS) and its active peptide angiotensin II (AngII) have major involvements not only in hypertension but also in mood and anxiety disorders. Substantial evidence supports the notion that AngII acts as a neuromodulator in the brain. In this review, we provide an overview of the link between the RAS and anxiety or mood disorders, and focus on recent advances in the understanding of AngII-linked, NADPH oxidase-derived oxidative stress in the central nervous system, which may underlie pathogenesis of mood and anxiety disorders
ajnmmi1106003
Abstract: Molecular imaging allows direct visualization of targets and characterization of cellular pathways, as long as a high signal/background ratio can be achieved, which requires a sufficient amount of probes to accumulate in the imaging region. The Asn-Gly-Arg (NGR) tripeptide selected by phage display can specifically target tumor vasculature. Recognizing the aminopeptidase N (APN or CD13) receptor on the membrane of tumor cells, the peptide can be further internalized into cytoplasma by the endosomal pathway. Hence NGR can serve as an ideal candidate for tumor imaging, once it is conjugated with fluorescent or radiolabeled imaging probes. Herein, we highlight some recent developments of NGR peptide based imaging of tumors. Although still in the preliminary stage, some NGR probes have shown potential as promising agents in future clinical applications
IJCEP1108001
Abstract: A diagnosis of lung cancer at its early stages is vital for improving the survival rate of patients. MicroRNAs (miRNAs), a family of 19-to 25-nucleotide non-coding small RNAs, are frequently dysregulated in lung cancer. The objective of this study was to investigate the potential of circulating miRNAs for early detection of lung cancer. We searched the published literature for the miRNA microarray data of primary lung cancer and selected 15 miRNAs that were most frequently up-regulated in lung cancer tissues. Total plasma RNA including miRNAs was isolated, polyadenylated and reverse-transcribed into cDNAs. The levels of miRNAs were determined by real-time RT-PCR in 74 lung cancer patients and 68 age-matched cancer-free controls. We found that the levels of miR-155, miR-197, and miR-182 in the plasma of lung cancer including stage I patients were significantly elevated compared with controls (P<0.001). The combination of these 3 miRNAs yielded 81.33% sensitivity and 86.76% specificity in discriminating lung cancer patients from controls. The levels of miR-155 and miR-197 were higher in the plasma from lung cancer patients with metastasis than in those without metastasis (P<0.05) and were significantly decreased in responsive patients during chemotherapy (P<0.001). These results indicate that miR-155, miR-197, and miR-182 can be potential non-invasive biomarkers for early detection of lung cancer
