359 research outputs found

    Experimental evidence for topological surface states wrapping around bulk SnTe crystal

    Full text link
    We demonstrate that the metallic topological surface states wrap on all sides the 3D topological crystalline insulator SnTe. This is achieved by studying oscillatory quantum magneto-transport and magnetization at tilted magnetic fields which enables us to observe simultaneous contributions from neighbouring sample sides. Taking into account pinning of the Fermi energy by the SnTe reservoir we successfully describe theoretically the de Haas-van Alphen oscillations of magnetization. The determined \pi-Berry phase of surface states confirms their Dirac fermion character. We independently observe oscillatory contributions of magneto-transport and magnetization originating from the bulk SnTe reservoir of high hole density. It is concluded that the bulk and surface Landau states exist in parallel. Our main result that the bulk reservoir is surrounded on all sides by the topological surface states has an universal character.Comment: 5 pages, 2 figures, 12 pages supplemental materia

    Polarization properties of polymer-based photonic crystal fibers

    Get PDF
    Selectively filled photonic crystal fibers with polydimethylsiloxane (PDMS), a silicon-type material, have been studied. Is has been demonstrated that polarization properties of these hybrid devices and the properties of the guided light in relation with the temperature changes, finding that the state of polarization (SOP) change with the increasing temperature but remains constant for a wide spectrum of wavelengths for a determinate temperature

    Effect of a high surface-to-volume ratio on fluorescence-based assays

    Get PDF
    In the work discussed in this paper, the effect of a high surface-to-volume ratio of a microfluidic detection cell on fluorescence quenching was studied. It was found that modification of the geometry of a microchannel can provide a wider linear range. This is a phenomenon which should be taken into consideration when microfluidic systems with fluorescence detection are developed. The dependence of the linear range for fluorescein on the surface-to-volume ratio was determined. Both fluorescence inner-filter effects and concentration self-quenching were taken into consideration. It was found that inner-filter effects have little effect on the extent of the linear range on the microscale. [Figure: see text

    Dynamical scaling of the quantum Hall plateau transition

    Full text link
    Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all other data in literature. We observe a universal scaling function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z = 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    Absorbance based light emitting diode optical sensors and sensing devices

    Get PDF
    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements

    Temperature driven spin-zero effect in TaAs2_2

    Full text link
    The electrical and thermo-electrical transport effects of the TaAs2_2 semimetal were measured in a magnetic field applied along [-2 0 1] direction. The resulting field dependences of the resistivity as well as the Hall, Seebeck and Nernst coefficient below T ~ 100 K can be satisfactory described within the two-band model consisting of the electron and hole pockets. At low temperature all the measured effects exhibit significant contribution from quantum oscillations. The fast Fourier transform (FFT) of the oscillatory Nernst signal shows two fundamental frequencies, Fa = 105 T and Fb = 221 T, and the second harmonic of the latter (F2b = 442 T). The ratio between FFT amplitudes of Fb and F2b changes with temperature in an unusual way, indicating that we observe the spin-zero effect caused by temperature change. This is likely related to substantial temperature dependence of the Lande g-factor, which in turn can result from non-parabolic energy dispersion or temperature evolution of the spin-orbit coupling.Comment: 30 pages, 14 figure
    corecore