57,966 research outputs found
Energetic Components of Cooperative Protein Folding
A new lattice protein model with a four-helix bundle ground state is analyzed
by a parameter-space Monte Carlo histogram technique to evaluate the effects of
an extensive variety of model potentials on folding thermodynamics. Cooperative
helical formation and contact energies based on a 5-letter alphabet are found
to be insufficient to satisfy calorimetric and other experimental criteria for
two-state folding. Such proteinlike behaviors are predicted, however, by models
with polypeptide-like local conformational restrictions and
environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press
An Efficient Block Circulant Preconditioner For Simulating Fracture Using Large Fuse Networks
{\it Critical slowing down} associated with the iterative solvers close to
the critical point often hinders large-scale numerical simulation of fracture
using discrete lattice networks. This paper presents a block circlant
preconditioner for iterative solvers for the simulation of progressive fracture
in disordered, quasi-brittle materials using large discrete lattice networks.
The average computational cost of the present alorithm per iteration is , where the stiffness matrix is partioned into
-by- blocks such that each block is an -by- matrix, and
represents the operational count associated with solving a block-diagonal
matrix with -by- dense matrix blocks. This algorithm using the block
circulant preconditioner is faster than the Fourier accelerated preconditioned
conjugate gradient (PCG) algorithm, and alleviates the {\it critical slowing
down} that is especially severe close to the critical point. Numerical results
using random resistor networks substantiate the efficiency of the present
algorithm.Comment: 16 pages including 2 figure
Statistical variability in implant-free quantum-well MOSFETs with InGaAs and Ge: a comparative 3D simulation study
Introduction of high mobility channel materials including III-Vs and Ge into future CMOS generations offer the
potential for enhanced transport properties compared to Si. The Implant Free Quantum Well (IFQW) architecture
offers an attractive design to introduce these materials, providing excellent electrostatic integrity. Statistical variability introduced by the discreteness of charge and granularity of matter has become a key factor for current and future generations of MOSFETs and in this work numerical simulations are used to critically assess the statistical
variability in IFQW transistors and compare results with equivalent conventional Si ‘bulk’ MOSFETs
Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene
The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)
Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse
The objective of this paper is to discuss the dynamical instability in the
context of Newtonian and post Newtonian regimes. For this purpose, we consider
non-viscous heat conducting charged isotropic fluid as a collapsing matter with
cylindrical symmetry. Darmois junction conditions are formulated. The
perturbation scheme is applied to investigate the influence of dissipation and
electromagnetic field on the dynamical instability. We conclude that the
adiabatic index has smaller value for such a fluid in cylindrically
symmetric than isotropic sphere
The effect of 3He impurities on the nonclassical response to oscillation of solid 4He
We have investigated the influence of impurities on the possible supersolid
transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He)
with 3He. The onset of nonclassical rotational inertia is broadened and shifts
monotonically to higher temperature with increasing 3He concentration,
suggesting that the phenomenon is correlated to the condensation of 3He atoms
onto the dislocation network in solid 4He.Comment: 4 page
- …
