1,864 research outputs found

    The effect of nuclear deformation on level statistics

    Full text link
    We analyze the nearest neighbor spacing distributions of low-lying 2+ levels of even-even nuclei. We grouped the nuclei into classes defined by the quadrupole deformation parameter (Beta2). We calculate the nearest neighbor spacing distributions for each class. Then, we determine the chaoticity parameter for each class with the help of the Bayesian inference method. We compare these distributions to a formula that describes the transition to chaos by varying a tuning parameter. This parameter appears to depend in a non-trivial way on the nuclear deformation, and takes small values indicating regularity in strongly deformed nuclei and especially in those having an oblate deformation.Comment: 10 Pages, 6 figure

    Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide

    Get PDF
    Using ab initio modeling we demonstrate that H atoms can break strained Si─O bonds in continuous amorphous silicon dioxide (a−SiO2) networks, resulting in a new defect consisting of a threefold-coordinated Si atom with an unpaired electron facing a hydroxyl group, adding to the density of dangling bond defects, such as E′ centers. The energy barriers to form this defect from interstitial H atoms range between 0.5 and 1.3 eV. This discovery of unexpected reactivity of atomic hydrogen may have significant implications for our understanding of processes in silica glass and nanoscaled silica, e.g., in porous low-permittivity insulators, and strained variants of a−SiO2

    The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reverse-transcription polymerase chain reaction

    Get PDF
    The newly identified Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease, particularly in people with comorbidities, requires further investigation. Studies in Qatar and elsewhere have provided evidence that dromedary camels are a reservoir for the virus, but the exact modes of transmission of MERS-CoV to humans remain unclear. In February 2014, an assessment was made of the suitability and sensitivity of different types of sample for the detection of MERS-CoV by real-time reverse-transcription polymerase chain reaction (RT-PCR) for three gene targets: UpE (upstream of the E gene), the N (nucleocapsid) gene and open reading frame (ORF) 1a. Fifty-three animals presented for slaughter were sampled. A high percentage of the sampled camels (79% [95% confidence interval 66.9-91.5%, standard error 0.0625]; 42 out of 53) were shown to be shedding MERS-CoV at the time of slaughter, yet all the animals were apparently healthy. Among the virus-positive animals, nasal swabs were most often positive (97.6%). Oral swabs were the second most frequently positive (35.7%), followed by rectal swabs (28.5%). In addition, the highest viral load, expressed as a cycle threshold (Ct) value of 11.27, was obtained from a nasal swab. These findings lead to the conclusion that nasal swabs are the candidate sample of choice for detecting MERS-CoV using RT-PCR technology in apparently healthy camels

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Impact of Poultry Manure-Derived Biochar and Bio-Fertilizer Application to Boost Production of Black Cumin Plants (Nigella sativa L.) Grown on Sandy Loam Soil

    Get PDF
    Biochar derived from poultry manure increases nutrient availability and promotes plant growth. This study investigated the effect of biochar with mycorrhizal and/or plant growthpromoting rhizobacteria on soil fertility, chemical properties, oil, and seed yield of Black Cumin (Nigella sativa L.) plants. A split-plot design with three replicates was employed, with biochar derived from poultry litter (BC) applied at rates of 0, 5, and 10 t ha−1, with beneficial microbes such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) affecting the growth of Black Cumin plants, and some soil properties, such as pH, electrical conductivity (EC), soil organic matter (SOM) and fertility index (FI), showing significant differences (p ≤ 0.05) among biochar and/or bio-fertilizer treatments. All biochar treatments with or without bio-fertilizers significantly increased pH, EC, OM and FI in comparison to the control treatment. The results demonstrated that applying biochar at the highest rate (10 t ha−1) increased fresh and dry capsule weights by 94.51% and 63.34%, respectively, compared to the control treatment (C). These values were significantly increased by 53.05 and 18.37%, compared to untreated plants when combined with AMF and PGPR. Furthermore, when biochar was applied in conjunction with both AMF and PGPR, fresh and dry capsule weights saw significant increases of 208.84% and 91.18%, respectively, compared to the untreated control treatment. The interaction between biochar, AMF, and PGPR significantly improved plant growth, yield, soil properties, and the fixed and volatile oil content of Black Cumin. These findings suggest that the combined application of biochar, AMF, and PGPR enhances nutrient availability and uptake, leading to improved growth and higher yields in Black Cumin plants, resulting in increased yield productio

    Scaffold hopping of α-rubromycin enables direct access to FDA-approved cromoglicic acid as a SARS-CoV-2 M<sup>Pro</sup> inhibitor

    Get PDF
    The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 &gt; 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation

    : a cis antisense RNA operates in trans in S. aureus

    No full text
    International audienceAntisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes
    corecore