2,197 research outputs found
Dependence of Maximum Trappable Field on Superconducting Nb3Sn Cylinder Wall Thickness
Uniform dipole magnetic fields from 1.9 to 22.4 kOe were permanently trapped,
with high fidelity to the original field, transversely to the axes of hollow
Nb3Sn superconducting cylinders. These cylinders were constructed by helically
wrapping multiple layers of superconducting ribbon around a mandrel. This is
the highest field yet trapped, the first time trapping has been reported in
such helically wound taped cylinders, and the first time the maximum trappable
field has been experimentally determined as a function of cylinder wall
thickness.Comment: 8 pages, 4 figures, 1 table. PACS numbers: 74.60.Ge, 74.70.Ps,
41.10.Fs, 85.25.+
Global periodicity conditions for maps and recurrences via Normal Forms
We face the problem of characterizing the periodic cases in parametric
families of (real or complex) rational diffeomorphisms having a fixed point.
Our approach relies on the Normal Form Theory, to obtain necessary conditions
for the existence of a formal linearization of the map, and on the introduction
of a suitable rational parametrization of the parameters of the family. Using
these tools we can find a finite set of values p for which the map can be
p-periodic, reducing the problem of finding the parameters for which the
periodic cases appear to simple computations. We apply our results to several
two and three dimensional classes of polynomial or rational maps. In particular
we find the global periodic cases for several Lyness type recurrences.Comment: 25 page
Cosmo-dynamics and dark energy with a quadratic EoS: anisotropic models, large-scale perturbations and cosmological singularities
In general relativity, for fluids with a linear equation of state (EoS) or
scalar fields, the high isotropy of the universe requires special initial
conditions, and singularities are anisotropic in general. In the brane world
scenario anisotropy at the singularity is suppressed by an effective quadratic
equation of state. There is no reason why the effective EoS of matter should be
linear at the highest energies, and a non-linear EoS may describe dark energy
or unified dark matter (Paper I, astro-ph/0512224). In view of this, here we
study the effects of a quadratic EoS in homogenous and inhomogeneous
cosmological models in general relativity, in order to understand if in this
context the quadratic EoS can isotropize the universe at early times. With
respect to Paper I, here we use the simplified EoS P=alpha rho + rho^2/rho_c,
which still allows for an effective cosmological constant and phantom behavior,
and is general enough to analyze the dynamics at high energies. We first study
anisotropic Bianchi I and V models, focusing on singularities. Using dynamical
systems methods, we find the fixed points of the system and study their
stability. We find that models with standard non-phantom behavior are in
general asymptotic in the past to an isotropic fixed point IS, i.e. in these
models even an arbitrarily large anisotropy is suppressed in the past: the
singularity is matter dominated. Using covariant and gauge invariant variables,
we then study linear perturbations about the homogenous and isotropic spatially
flat models with a quadratic EoS. We find that, in the large scale limit, all
perturbations decay asymptotically in the past, indicating that the isotropic
fixed point IS is the general asymptotic past attractor for non phantom
inhomogeneous models with a quadratic EoS. (Abridged)Comment: 16 pages, 6 figure
Devil's Staircase in Magnetoresistance of a Periodic Array of Scatterers
The nonlinear response to an external electric field is studied for classical
non-interacting charged particles under the influence of a uniform magnetic
field, a periodic potential, and an effective friction force. We find numerical
and analytical evidence that the ratio of transversal to longitudinal
resistance forms a Devil's staircase. The staircase is attributed to the
dynamical phenomenon of mode-locking.Comment: two-column 4 pages, 5 figure
Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation
We study the Einstein-Klein-Gordon equations for a convex positive potential
in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing
the inherent properties of the system of differential equations, the study of
the asymptotic behaviors of the solutions and their stability is done for an
exponential potential. The results are compared with those of Burd and Barrow.
In contrast with their results, we show that for the BI case isotropy can be
reached without inflation and we find new critical points which lead to new
exact solutions. On the other hand we recover the result of Burd and Barrow
that if inflation occurs then isotropy is always reached. The numerical
integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published
in Phys. Rev.
Bottleable neutral analogues of [B2H5]- as versatile and strongly binding eta2 donor ligands
Herein we report the discovery that two bottleable, neutral, base-stabilized diborane(5) compounds are able to bind strongly to a number of copper(I) complexes exclusively through their B-B bond. The resulting complexes represent the first known complexes containing unsupported, neutral σB-B diborane ligands. Single-crystal X-ray analyses of these complexes show that the X-Cu moiety (X = Cl, OTf, C6F5) lies opposite the bridging hydrogen of the diborane and is near perpendicular to the B-B bond, interacting almost equally with both boron atoms and causing a B-B bond elongation. DFT studies show that σ donation from and π backdonation to the pseudo-π-like B-B bond account for their formation. Astoundingly, these copper σB-B-complexes are inert to ligand exchange with pyridine under either heating or photoirradiation
Ergodicity criteria for non-expanding transformations of 2-adic spheres
In the paper, we obtain necessary and sufficient conditions for ergodicity
(with respect to the normalized Haar measure) of discrete dynamical systems
on 2-adic spheres of radius
, , centered at some point from the ultrametric space of
2-adic integers . The map is
assumed to be non-expanding and measure-preserving; that is, satisfies a
Lipschitz condition with a constant 1 with respect to the 2-adic metric, and
preserves a natural probability measure on , the Haar measure
on which is normalized so that
Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53.
The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed
Low-density series expansions for directed percolation IV. Temporal disorder
We introduce a model for temporally disordered directed percolation in which
the probability of spreading from a vertex , where is the time and
is the spatial coordinate, is independent of but depends on . Using
a very efficient algorithm we calculate low-density series for bond percolation
on the directed square lattice. Analysis of the series yields estimates for the
critical point and various critical exponents which are consistent with a
continuous change of the critical parameters as the strength of the disorder is
increased.Comment: 11 pages, 3 figure
DESIGN AND IMPLEMENTATION OF AN ORIENTATION TO ONLINE LEARNING MINI COURSE WITH UNDERGRADUATE AND GRADUATE STUDENTS WITH VARYING LEVELS OF ONLINE COURSE EXPERIENCE
This case study examined the implementation of an orientation to online learning mini-course that introduced the learning management system (LMS) and the support services available for online learning students involved in undergraduate and graduate coursework. The purpose of the mini-course was to address issues with online course attrition related to students\u27 technology preparation and skills described in the literature (Bozarth, Chapman, and LaMonica, 2004; Dupin-Bryant, 2004). The course design featured elements of Keller’s (1968) Personalized Systems of Instruction and Bloom’s Mastery Learning (Guskey, 1997), specifically, student demonstration of unit mastery, monitored by the instructor, and the use of correctives. Sixty-five (65) undergraduate and graduate students took the mini-course concurrently with required for-credit coursework. Using implementation science as a conceptual lens (Greenhalgh, Robert, McFarlane, Bate & Kyriakidou, 2004) the research focused on students\u27 interaction with the mini-course design features and documented the implementation process on multiple levels of a user system: system readiness, adoption/assimilation, end-user implementation and consequences. Demographic data, scores from technology skills surveys and an assistance needs questionnaire were analyzed along with data from student emails and course evaluations with open-ended questions.
Perhaps the most unanticipated finding was the lack of system readiness to test and integrate a research-based orientation course that, given the attrition rates among students with varying levels of course experience, is needed to support students\u27 effective participation in online coursework. Serious issues regarding system readiness to implement the mini-course included a lack of support resources to incorporate the mini-course within existing coursework systems. Across several institutions, and with positive responses to the need for online course orientation, administrators were unable to clearly commit and schedule a course that would cost neither the student nor the institution and was customized to their institution’s LMS. Access was negotiated at the course/instructor level only. Readiness issues then affected motivations for the adoption and assimilation of the mini-course.
At the system level of implementation, a more comprehensive strategy to obtain institutional buy-in to facilitate implementation is needed. At the end-user level of implementation, participants with varying levels of experience responded differently to the various skill options. Frustrations with a mastery approach was reported, in particular wait times for instructor response needed to proceed. And while many reported the course was not useful for them, but would be for new students, they clearly needed the skills related to software navigation, hardware and internet communication tools and competencies. Future design of the orientation course needs to include 1) multiple versions to accommodate students’ perceptions of their needs, 2) direct feedback on skill levels to promote acceptability and 3) more automated instructor response features. The limited number of freshman and students new to online coursework did not support conclusions about the utility of such a course to address attrition among those groups
- …
