146 research outputs found
Psychiatric Disorders and lncRNAs: A Synaptic Match
Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation
Dissecting the Hippocampal Regulation of Approach-Avoidance Conflict: Integrative Perspectives From Optogenetics, Stress Response, and Epigenetics
Psychiatric disorders are multifactorial conditions without clear biomarkers, influenced by genetic, environmental, and developmental factors. Understanding these disorders requires identifying specific endophenotypes that help break down their complexity. Here, we undertake an in-depth analysis of one such endophenotype, namely imbalanced approach-avoidance conflict (AAC), reviewing its significant dependency on the hippocampus. Imbalanced AAC is a transdiagnostic endophenotype, being a feature of many psychiatric conditions in humans. However, it is predominantly examined in preclinical research through paradigms that subject rodents to conflict-laden scenarios. This review offers an original perspective by discussing the AAC through three distinct lights: optogenetic modulation of the AAC, which updates our understanding of the hippocampal contribution to behavioral inhibition; the impact of environmental stress, which exacerbates conflict and strengthens the stress-psychopathology axis; and inherent epigenetic aspects, which uncover crucial molecular underpinnings of environmental (mal) adaptation. By integrating these perspectives, in this review we aim to underline a cross-species causal nexus between heightened hippocampal activity and avoidance behavior. In addition, we suggest a rationale to explore epigenetic pharmacology as a potential strategy to tackle AAC-related psychopathology. This review assumes greater significance when viewed through the lens of advancing AAC-centric diagnostics in human subjects. Unlike traditional questionnaires, which struggle to accurately measure individual differences in AAC-related dimensions, new approaches using virtual reality and computer games show promise in better focusing the magnitude of AAC contribution to psychopathology
LSD1 Scale-Up: transitioning from cells to a pre-clinical RNA-based therapy approach for post-traumatic disorders
Since its discovery, our research has focused on elucidating the role of Lysine Specific Demethylase 1 (LSD1) in the brain and its implications for complex brain disorders, including neurodevelopmental and neuropsychiatric conditions. LSD1 is an epigenetic enzyme that functions within a larger co-repressor complex, including CoREST and HDAC1/2, to fine-tune the expression of neuroplastic genes in glutamatergic neurons.
Through constitutive genetic manipulation, we demonstrated that LSD1 activity is engaged both in vitro and in vivo in response to homeostasis-demanding paradigms of neuronal activation, such as epileptic and traumatic-like depolarization events. This engagement occurs through the skipping of alternatively spliced exon E8a, increasing LSD1 levels. This response limits synaptic gene expression within a transient post-epileptic/traumatic window, which we hypothesize is crucial for circuit and behavioral preservation. This pathway represents an evolutionary acquisition, exhibiting increasingly complex regulation from mice to humans, with emerging nuances mediated by neuro-specific splicing regulators (including nSR100 and RbFOX1) and long non-coding RNAs such as MALAT1.
We present new evidence implicating the LSD1 pathway, along with its regulators, in resilience biology. We have generated an RNA-based therapy tool designed to transiently boost LSD1 activity, thereby enhancing its co-repressive function within inherent post-traumatic behavioral paradigms and effectively mimicking and strengthening its physiological engagement. Exploiting this tool, we intend to advance our understanding of LSD1 as a modifier of contextual fear memory, the core pathological domain of post-traumatic disorders
A novel role for LSD1 splicing modulation in homeostatic adaptation to chronic stress
The stress response serves as a protective mechanism to address daily challenges, yet it's crucial for it to cease when the threat subsides, as prolonged stress engagement links to higher vulnerability to neuropsychiatric disorders.
Lysine Specific Demethylase 1 (LSD1) is an epigenetic enzyme participating in the CoREST/HDAC2 corepressor complex regulating neuronal plasticity-related gene transcription. In the mammalian brain, LSD1 activity is modulated by its neurospecific splicing isoform neuroLSD1, lacking co-repressive activity as long as the ability to recruit corepressor partners. Numerous studies have compellingly demonstrated that when faced with potent environmental stimuli, LSD1/neuroLSD1 ratio is prompted toward LSD1 by splicing regulation, promoting an overall reduction of the stress-induced plasticity-related mechanisms of hippocampal glutamatergic neurons.
In this project, we established an animal model of chronic psychosocial stress based on a modified version of the chronic Social Defeat Stress paradigm, which allowed us to cluster behaviorally resilient and susceptible animals. The behavioral-guided clustering of susceptible animals correlates to decreased LSD1 hippocampal levels, unraveling a mechanism of desensitization of the splicing modulation mechanism after sustained stress in a subset of susceptible animals. In parallel, molecular-guided clustering, based on LSD1 levels, shows that animals with higher LSD1 expression rank within resilient behavioral profile.
Relevantly, data obtained from post-mortem human hippocampal of suicide samples feature decreased levels of LSD1.
These data preliminarily support a role for LSD1 in the biology of environmental stress resiliency, a hot topic of neuropsychopharmacology
Recommended from our members
High Prevalence of Burnout Among US Emergency Medicine Residents: Results From the 2017 National Emergency Medicine Wellness Survey
STUDY OBJECTIVE:Previous work shows that emergency medicine attending physicians have higher-than-average rates of burnout. Preliminary data suggest that emergency medicine residents are also at risk for burnout. The objective of this study was to conduct the first national survey assessment of US emergency medicine residents to determine the prevalence of burnout. METHODS:This prospective 2017 National Emergency Medicine Resident Wellness Survey study was conducted through the Wellness Think Tank, whereby emergency medicine residents from 247 residencies across the United States were invited to participate in a national survey. The primary measure of burnout was the Maslach Burnout Inventory-Human Services Survey. In accordance with others' work, "burnout" was defined as a dichotomous variable represented by high levels of emotional exhaustion or depersonalization. Because of interpretative variability with the survey tool, we also calculated burnout rates by using a more restrictive definition and a more inclusive definition that have been reported in the literature. RESULTS:Surveys were completed by 1,522 residents (21.1% of all US emergency medicine residents), representing 193 of 247 US emergency medicine residency programs (78.1%). Within this sample, the prevalence of burnout was 76.1% (95% confidence interval 74.0% to 78.3%). With alternative definitions applied, burnout prevalence rates for this same sample were 18.2% (95% confidence interval 16.3% to 20.1%) with the more restrictive definition and 80.9% (95% confidence interval 78.9% to 82.9%) with the more inclusive definition. CONCLUSION:The majority of US emergency medicine residents responding to this survey reported symptoms consistent with burnout, highlighting that physician burnout in the emergency medicine profession seems to begin as early as residency training. These findings may provide a baseline against which future work can be compared
Multiple Layers of CDK5R1 Regulation in Alzheimer’s Disease Implicate Long Non-Coding RNAs
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) gene encodes for p35, the main activator of Cyclin-dependent kinase 5 (CDK5). The active p35/CDK5 complex is involved in numerous aspects of brain development and function, and its deregulation is closely associated to Alzheimer\u2019s disease (AD) onset and progression. We recently showed that miR-15/107 family can negatively regulate CDK5R1 expression modifying mRNA stability. Interestingly, miRNAs belonging to miR-15/107 family are downregulated in AD brain while CDK5R1 is upregulated. Long non-coding RNAs (lncRNAs) are emerging as master regulators of gene expression, including miRNAs, and their dysregulation has been implicated in the pathogenesis of AD. Here, we evaluated the existence of an additional layer of CDK5R1 expression regulation provided by lncRNAs. In particular, we focused on three lncRNAs potentially regulating CDK5R1 expression levels, based on existing data: NEAT1, HOTAIR, and MALAT1. We demonstrated that NEAT1 and HOTAIR negatively regulate CDK5R1 mRNA levels, while MALAT1 has a positive effect. We also showed that all three lncRNAs positively control miR-15/107 family of miRNAs. Moreover, we evaluated the expression of NEAT1, HOTAIR, and MALAT1 in AD and control brain tissues. Interestingly, NEAT1 displayed increased expression levels in temporal cortex and hippocampus of AD patients. Interestingly, we observed a strong positive correlation between CDK5R1 and NEAT1 expression levels in brain tissues, suggesting a possible neuroprotective role of NEAT1 in AD to compensate for increased CDK5R1 levels. Overall, our work provides evidence of another level of CDK5R1 expression regulation mediated by lncRNAs and points to NEAT1 as a biomarker, as well as a potential pharmacological target for AD therapy
Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system
A variety of chromatin remodeling complexes are thought to orchestrate transcriptional programs that lead neuronal precursors from earliest commitment to terminal differentiation. Here we show that mammalian neurons have a specialized chromatin remodeling enzyme arising from a neurospecific splice variant of LSD1/KDM1, histone lysine specific demethylase 1, whose demethylase activity on Lys4 of histone H3 has been related to gene repression. We found that alternative splicing of LSD1 transcript generates four full-length isoforms from combinatorial retention of two identified exons: the 4 aa exon E8a is internal to the amine oxidase domain, and its inclusion is restricted to the nervous system. Remarkably, the expression of LSD1 splice variants is dynamically regulated throughout cortical development, particularly during perinatal stages, with a progressive increase of LSD1 neurospecific isoforms over the ubiquitous ones. Notably, the same LSD1 splice dynamics can be fairly recapitulated in cultured cortical neurons. Functionally, LSD1 isoforms display in vitro a comparable demethylase activity, yet the inclusion of the sole exon E8a reduces LSD1 repressor activity on a reporter gene. Additional distinction among isoforms is supported by the knockdown of neurospecific variants in cortical neurons resulting in the inhibition of neurite maturation, whereas overexpression of the same variants enhances it. Instead, perturbation of LSD1 isoforms that are devoid of the neurospecific exon elicits no morphogenic effect. Collectively, results demonstrate that the arousal of neuronal LSD1 isoforms pacemakes early neurite morphogenesis, conferring a neurospecific function to LSD1 epigenetic activity
Differential properties of transcriptional complexes formed by the CoREST family
Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1) and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases HDAC1/2 and the finding that all three CoRESTs express in the adult rat brain. CoRESTs interact equally strong with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2 which is barely present in LSD1/KDM1A-CoREST2 complexes. A non-conserved Leucine in the first SANT domain of CoREST2 severely weakens its association to HDAC1/2. Furthermore, CoREST2 mutants with either increased or lacking HDAC1/2 interaction feature equivalent transcriptional repression capacities, indicating that CoREST2 represses in a HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental to the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine tuning gene expression regulation
LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior
Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos. Deletion or reduction of neuroLSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO) mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress
Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension
Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the
vascular and tissue damage of several chronic diseases, including systemic
sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I
and T280M genetic polymorphisms influence CX3CR1 expression and function. We
investigated whether these polymorphisms are associated with PAH secondary to
SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with
limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography.
Homozygosity for 249II as well as the combined presence of 249II and 280MM were
significantly more frequent in patients with SSc compared to controls (17 vs 6%,
p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were
associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75,
p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion,
the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of
patients with SSc-associated PAH suggest a role for the fractalkine system in
the pathogenesis of this
condition. Further, the 249I allele might be associated with susceptibility to SSc
- …
