3,163 research outputs found
GazeDrone: Mobile Eye-Based Interaction in Public Space Without Augmenting the User
Gaze interaction holds a lot of promise for seamless human-computer interaction. At the same time, current wearable mobile eye trackers require user augmentation that negatively impacts natural user behavior while remote trackers require users to position themselves within a confined tracking range. We present GazeDrone, the first system that combines a camera-equipped aerial drone with a computational method to detect sidelong glances for spontaneous (calibration-free) gaze-based interaction with surrounding pervasive systems (e.g., public displays). GazeDrone does not require augmenting each user with on-body sensors and allows interaction from arbitrary positions, even while moving. We demonstrate that drone-supported gaze interaction is feasible and accurate for certain movement types. It is well-perceived by users, in particular while interacting from a fixed position as well as while moving orthogonally or diagonally to a display. We present design implications and discuss opportunities and challenges for drone-supported gaze interaction in public
The HH34 outflow as seen in [FeII]1.64um by LBT-LUCI
Dense atomic jets from young stars copiously emit in [FeII] IR lines, which
can, therefore, be used to trace the immediate environments of embedded
protostars. We want to investigate the morphology of the bright [FeII] 1.64um
line in the jet of the source HH34 IRS and compare it with the most commonly
used optical tracer [SII]. We analyse a 1.64um narrow-band filter image
obtained with the Large Binocular Telescope (LBT) LUCI instrument, which covers
the HH34 jet and counterjet. A Point Spread Function (PSF) deconvolution
algorithm was applied to enhance spatial resolution and make the IR image
directly comparable to a [SII] HST image of the same source. The [FeII]
emission is detected from both the jet, the (weak) counter-jet, and from the
HH34-S and HH34-N bow shocks. The deconvolved image allows us to resolve jet
knots close to about 1\arcsec from the central source. The morphology of the
[FeII] emission is remarkably similar to that of the [SII] emission, and the
relative positions of [FeII] and [SII] peaks are shifted according to proper
motion measurements, which were previously derived from HST images. An analysis
of the [FeII]/[SII] emission ratio shows that Fe gas abundance is much lower
than the solar value with up to 90% of Fe depletion in the inner jet knots.
This confirms previous findings on dusty jets, where shocks are not efficient
enough to remove refractory species from grains.Comment: 5 pages, 4 figures, note accepted by A&
Giant-dipole Resonance and the Deformation of Hot, Rotating Nuclei
The development of nuclear shapes under the extreme conditions of high spin
and/or temperature is examined. Scaling properties are used to demonstrate
universal properties of both thermal expectation values of nuclear shapes as
well as the minima of the free energy, which can be used to understand the
Jacobi transition. A universal correlation between the width of the giant
dipole resonance and quadrupole deformation is found, providing a novel probe
to measure the nuclear deformation in hot nuclei.Comment: 6 pages including 6 figures. To appear in Phys. Rev. Lett. Revtex
Geometrical features of (4+d) gravity
We obtain the vacuum spherical symmetric solutions for the gravitational
sector of a (4+d)-dimensional Kaluza-Klein theory. In the various regions of
parameter space, the solutions can describe either naked singularities or
black-holes or wormholes. We also derive, by performing a conformal rescaling,
the corresponding picture in the four-dimensional space-time.Comment: 10 pages, LateX2e, to appear in Phys.Rev.
Identification and rejection of scattered neutrons in AGATA
Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were
measured in an AGATA experiment performed at INFN Laboratori Nazionali di
Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors
(12 36-fold segmented high-purity germanium crystals), placed at a distance of
50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment
was to study the interaction of neutrons in the segmented high-purity germanium
detectors of AGATA and to investigate the possibility to discriminate neutrons
and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were
used for a time-of-flight measurement, which gave an independent discrimination
of neutrons and gamma rays and which was used to optimise the gamma-ray
tracking-based neutron rejection methods. It was found that standard gamma-ray
tracking, without any additional neutron rejection features, eliminates
effectively most of the interaction points due to recoiling Ge nuclei after
elastic scattering of neutrons. Standard tracking rejects also a significant
amount of the events due to inelastic scattering of neutrons in the germanium
crystals. Further enhancements of the neutron rejection was obtained by setting
conditions on the following quantities, which were evaluated for each event by
the tracking algorithm: energy of the first and second interaction point,
difference in the calculated incoming direction of the gamma ray,
figure-of-merit value. The experimental results of tracking with neutron
rejection agree rather well with Geant4 simulations
Evidence for the Jacobi shape transition in hot 46Ti
The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in
the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an
experiment using a setup consisting of the combined EUROBALL IV, HECTOR and
EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the
predictions of the thermal shape fluctuation model shows evidence for the
Jacobi shape transition in hot 46Ti. In addition to the previously found broad
structure in the GDR lineshape region at 18-27 MeV caused by large
deformations, the presence of a low energy component (around 10 MeV), due to
the Coriolis splitting in prolate well deformed shape, has been identified for
the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003,
Paris; to be published in Nucl. Phys.
Correlates to the variable effects of cannabis in young adults: a preliminary study
Background: Cannabis use can frequently have adverse affects in those that use it and these can be amplified by various characteristics of an individual, from demographic and environmental variations to familial predisposition for mental illnesses. Methods: The current study of 100 individuals, who were cannabis users during their adolescence and may still be users, was a survey of the self perceived effects of cannabis and their correlates. A reliable family member was also interviewed for determination of family history of various major mental illnesses and substance use. Results: As many as 40% of cannabis users had paranoid feelings (suspiciousness) when using cannabis, although the most frequent effect was feeling relaxed (46%). Having a familial background for mental illnesses such as depression or schizophrenia did not determine the effects of cannabis nor its pattern of use, although the number of subjects with such a history was small. An age at which an individual began using cannabis did have an effect on how heavily it was used and the heavier the cannabis use, the more likely the individual was also to have had psychotic symptoms after use. There were no sex differences in effects of cannabis. These results are tempered by the reliance on self-report for many of the variables ascertained. Conclusion: Cannabis can frequently have negative effects in its users, which can be amplified by certain demographic and/or psychosocial factors. Thus, users with a specific profile may be at a higher risk of unpleasant effects from cannabis use and caution should be noted when cannabis is administered to young people for medicinal purposes
- …
