48,449 research outputs found
Isolated Prompt Photon Production in Hadronic Final States of Annihilation
We provide complete analytic expressions for the isolated prompt photon
production cross section in annihilation reactions through one-loop
order in quantum chromodynamics (QCD) perturbation theory. Functional
dependences on the isolation cone size and isolation energy parameter
are derived. The energy dependence as well as the full angular
dependence of the cross section on are displayed, where
specifies the direction of the photon with respect to the
collision axis. We point out that conventional perturbative QCD
factorization breaks down for isolated photon production in
annihilation reactions in a specific region of phase space. We discuss the
implications of this breakdown for the extraction of fragmentation functions
from annihilation data and for computations of prompt photon
production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one
compressed fil
The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts
I present an analysis of the gamma-ray and afterglow energies of the complete
sample of 17 short duration GRBs with prompt X-ray follow-up. I find that 80%
of the bursts exhibit a linear correlation between their gamma-ray fluence and
the afterglow X-ray flux normalized to t=1 d, a proxy for the kinetic energy of
the blast wave ($F_{X,1}~F_{gamma}^1.01). An even tighter correlation is
evident between E_{gamma,iso} and L_{X,1} for the subset of 13 bursts with
measured or constrained redshifts. The remaining 20% of the bursts have values
of F_{X,1}/F_{gamma} that are suppressed by about three orders of magnitude,
likely because of low circumburst densities (Nakar 2007). These results have
several important implications: (i) The X-ray luminosity is generally a robust
proxy for the blast wave kinetic energy, indicating nu_X>nu_c and hence a
circumburst density n>0.05 cm^{-3}; (ii) most short GRBs have a narrow range of
gamma-ray efficiency, with ~0.85 and a spread of 0.14 dex; and
(iii) the isotropic-equivalent energies span 10^{48}-10^{52} erg. Furthermore,
I find tentative evidence for jet collimation in the two bursts with the
highest E_{gamma,iso}, perhaps indicative of the same inverse correlation that
leads to a narrow distribution of true energies in long GRBs. I find no clear
evidence for a relation between the overall energy release and host galaxy
type, but a positive correlation with duration may be present, albeit with a
large scatter. Finally, I note that the outlier fraction of 20% is similar to
the proposed fraction of short GRBs from dynamically-formed neutron star
binaries in globular clusters. This scenario may naturally explain the
bimodality of the F_{X,1}/F_{gamma} distribution and the low circumburst
densities without invoking speculative kick velocities of several hundred km/s.Comment: Submitted to ApJ; 9 pages, 2 figures, 1 tabl
The Angular Size and Proper Motion of the Afterglow of GRB 030329
The bright, nearby (z=0.1685) gamma-ray burst of 29 March 2003 has presented
us with the first opportunity to directly image the expansion of a GRB. This
burst reached flux density levels at centimeter wavelengths more than 50 times
brighter than any previously studied event. Here we present the results of a
VLBI campaign using the VLBA, VLA, Green Bank, Effelsberg, Arecibo, and
Westerbork telescopes that resolves the radio afterglow of GRB 030329 and
constrains its rate of expansion. The size of the afterglow is found to be
\~0.07 mas (0.2 pc) 25 days after the burst, and 0.17 mas (0.5 pc) 83 days
after the burst, indicating an average velocity of 3-5 c. This expansion is
consistent with expectations of the standard fireball model. We measure the
projected proper motion of GRB 030329 in the sky to <0.3 mas in the 80 days
following the burst. In observations taken 52 days after the burst we detect an
additional compact component at a distance from the main component of 0.28 +/-
0.05 mas (0.80 pc). The presence of this component is not expected from the
standard model.Comment: 12 pages including 2 figures, LaTeX. Accepted to ApJ Letters on May
14, 200
Analytic Calculation of Prompt Photon plus Associated Heavy Flavor at Next-to-Leading Order in QCD
Contributions through second order, , in perturbative quantum
chromodynamics are calculated analytically for inclusive associated production
of a prompt photon and a charm quark at large values of transverse momentum in
high energy hadron-hadron collisions. Seven partonic subprocesses contribute at
order . We find important corrections to the lowest order,
, subprocess . We demonstrate to what
extent data from may serve to measure
the charm quark density in the nucleon.Comment: 34 pages RevTex plus 9 figures submitted as uuencoded ps files;
figures replaced and text revised to include one additional referenc
A new route towards uniformly functionalized single-layer graphene
It is shown, by DFT calculations, that the uniform functionalization of upper
layer of graphite by hydrogen or fluorine does not change essentially its
bonding energy with the underlying layers, whereas the functionalization by
phenyl groups decreases the bonding energy by a factor of approximately ten.
This means that the functionalized monolayer in the latter case can be easily
separated by mild sonication. According to our computational results, such
layers can be cleaned up to pure graphene, as well as functionalized further up
to 25% coverage, without essential difficulties. The energy gap within the
interval from 0.5 to 3 eV can be obtained by such one-side funtionalization
using different chemical species.Comment: 15 pages, 3 figures, to appear in J. Phys. D: Applied Physic
Evolution of the Fermi surface of BiTeCl with pressure
We report measurements of Shubnikov-de Haas oscillations in the giant Rashba
semiconductor BiTeCl under applied pressures up to ~2.5 GPa. We observe two
distinct oscillation frequencies, corresponding to the Rashba-split inner and
outer Fermi surfaces. BiTeCl has a conduction band bottom that is split into
two sub-bands due to the strong Rashba coupling, resulting in two
spin-polarized conduction bands as well as a Dirac point. Our results suggest
that the chemical potential lies above this Dirac point, giving rise to two
Fermi surfaces. We use a simple two-band model to understand the pressure
dependence of our sample parameters. Comparing our results on BiTeCl to
previous results on BiTeI, we observe similar trends in both the chemical
potential and the Rashba splitting with pressure.Comment: 6 pages, 5 figure
- …
