298 research outputs found
The inherent instability of leveed seafloor channels
New analytical models demonstrate that under 2 aggradational flow conditions seafloor channel-levee systems are inherently unstable; both channel area and stability necessarily decrease at long timescales. In time such systems must avulse purely through internal (autogenic) forcing. Although autogenic instabilities likely arise over long enough time for additional allogenic forcing to be expected, channel-levee sensitivity to variations in flow character depends on the prior degree of system evolution. Recalibrated modern Amazon Fan avulsion timings are consistent with this model, challenging accepted interpretations of avulsion triggering
Multi-level selection and the issue of environmental homogeneity
In this paper, I identify two general positions with respect to the relationship between environment and natural selection. These positions consist in claiming that selective claims need and, respectively, need not be relativized to homogenous environments. I then show that adopting one or the other position makes a difference with respect to the way in which the effects of selection are to be measured in certain cases in which the focal population is distributed over heterogeneous environments. Moreover, I show that these two positions lead to two different interpretations – the Pricean and contextualist ones – of a type of selection scenarios in which multiple groups varying in properties affect the change in the metapopulation mean of individual-level traits. Showing that these two interpretations stem from different attitudes towards environmental homogeneity allows me to argue: a) that, unlike the Pricean interpretation, the contextualist interpretation can only claim that drift or selection is responsible for the change in frequency of the focal trait in a given metapopulation if details about whether or not group formation is random are specified; b) that the traditional main objection against the Pricean interpretation – consisting in arguing that the latter takes certain side-effects of individual selection to be effects of group selection – is unconvincing. This leads me to suggest that the ongoing debate about which of the two interpretations is preferable should concentrate on different issues than previously thought
Delta progradation within a transgression of sea level: Examples from the New Jersey continental margin
Preliminary Program for the Eighth Conference on Geology of Long Island and Metropolitan New Yor
Long-term patterns of body mass and stature evolution within the hominin lineage.
Body size is a central determinant of a species' biology and adaptive strategy, but the number of reliable estimates of hominin body mass and stature have been insufficient to determine long-term patterns and subtle interactions in these size components within our lineage. Here, we analyse 254 body mass and 204 stature estimates from a total of 311 hominin specimens dating from 4.4 Ma to the Holocene using multi-level chronological and taxonomic analytical categories. The results demonstrate complex temporal patterns of body size variation with phases of relative stasis intermitted by periods of rapid increases. The observed trajectories could result from punctuated increases at speciation events, but also differential proliferation of large-bodied taxa or the extinction of small-bodied populations. Combined taxonomic and temporal analyses show that in relation to australopithecines, early Homo is characterized by significantly larger average body mass and stature but retains considerable diversity, including small body sizes. Within later Homo, stature and body mass evolution follow different trajectories: average modern stature is maintained from ca 1.6 Ma, while consistently higher body masses are not established until the Middle Pleistocene at ca 0.5-0.4 Ma, likely caused by directional selection related to colonizing higher latitudes. Selection against small-bodied individuals (less than 40 kg; less than 140 cm) after 1.4 Ma is associated with a decrease in relative size variability in later Homo species compared with earlier Homo and australopithecines. The isolated small-bodied individuals of Homo naledi (ca 0.3 Ma) and Homo floresiensis (ca 100-60 ka) constitute important exceptions to these general patterns, adding further layers of complexity to the evolution of body size within the genus Homo. At the end of the Late Pleistocene and Holocene, body size in Homo sapiens declines on average, but also extends to lower limits not seen in comparable frequency since early Homo
History matters: ecometrics and integrative climate change biology
Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time—an approach we call ‘ecometrics’. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing
Marine substrate response from the analysis of seismic attributes in CHIRP sub-bottom profiles
O presente trabalho tem por objetivo apresentar uma avaliação da resposta dos atributos sísmicos (Amplitude Instantânea, Amplitude RMS, Energia e Frequência Instantânea) em diferentes tipos de substratos marinhos, correlacionando-os com características sedimentológicas das amostras coletadas. Foram analisados perfis sísmicos obtidos com um perfilador de subsuperfície com sinal do tipo CHIRP modelo SB-216S da marca EdgeTech, com frequência de trabalho de 2 e 16 kHz. O método se deu a partir da análise estatística não-paramétrica de Kruskal-Wallis foi aplicada para comparar o comportamento dos atributos com as diferentes classes dos grãos das amostras (subagrupadas segundo o grau de seleção) e com diferentes feições. Com base na análise dos resultados, foi possível distinguir dois grupos distintos nas amostras, o grupo SAMF (silte e areia muito fina) e o grupo AFMG (areia fina, areia média e areia grossa). Como conclusão, pode-se dizer que os atributos não foram capazes de distinguir entre as classes mais próximas dos grãos. Utilizando o coeficiente de Spearman foi verificado que o atributo "Amplitude Instantânea" mostrou-se mais eficiente em separar os dois conjuntos. Comparando sedimentos, gás e rocha, os atributos que utilizaram o atributo "amplitude" foram eficazes em separar os sedimentos do gás e da rocha, porém não os distinguiram entre as duas feições, visto que elas apresentaram amplitudes muito altas, mas semelhantes entre si. O atributo "Frequência Instantânea" mostrou-se eficaz na diferenciação entre sedimento, rocha e gás, o sedimento apresentou uma maior banda de frequência, a rocha uma faixa intermediária e o gás a menor delas.This paper presents an evaluation of the response of seismic reflection attributes in different types of marine substrate (rock, shallow gas, sediments) using seafloor samples for ground-truth statistical comparisons. The data analyzed include seismic reflection profiles collected using two CHIRP subbottom profilers (Edgetech Model 3100 SB-216S), with frequency ranging between 2 and 16 kHz, and a number (38) of sediment samples collected from the seafloor. The statistical method used to discriminate between different substratum responses was the non-parametric Kruskal-Wallis analysis, carried out in two steps: 1) comparison of Seismic Attributes between different marine substrates (unconsolidated sediments, rock and shallow gas); 2) comparison of Seismic Attributes between different sediment classes in seafloors characterized by unconsolidated sediments (subdivided according to sorting). These analyses suggest that amplitude-related attributes were effective in discriminating between sediment and gassy/rocky substratum, but did not differentiate between rocks and shallow gas. On the other hand, the Instantaneous Frequency attribute was effective in differentiating sediments, rocks and shallow gas, with sediment showing higher frequency range, rock an intermediate range, and shallow gas the lowest response. Regarding grain-size classes and sorting, statistical analysis discriminated between two distinct groups of samples, the SVFS (silt and very fine sand) and the SFMC (fine, medium and coarse sand) groups. Using a Spearman coefficient, it was found that the Instantaneous Amplitude was more efficient in distinguishing between the two groups. None of the attributes was able to distinguish between the closest grain size classes such as those of silt and very fine sand
Splendid oddness: revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance
The South American Pleistocene mammal fauna includes great-sized animals that have intrigued scientists for over two centuries. Here we intend to update the knowledge on its palaeoecology and provide new evidence regarding two approaches: energetics and population density and relative abundance of fossils per taxa. To determine whether an imbalance exists, population density models were applied to several South American fossil faunas and the results compared to those that best describe the palaeoecology of African faunas. The results on the abundance study for Uruguay and the province of Buenos Aires during the Lujanian stage/age reveal that bulk-feeding ground sloths (Lestodon and Glossotherium) were more represented in the first territory, while the more selective Scelidotherium and Megatherium were more abundant in the second. Although the obtained values were corrected to avoid size-related taphonomic biases, linear regressions of abundance vs. body mass plots did not fit the expected either for first or second consumers. South American Pleistocene faunas behave differently from what models suggest they should. Changes in sea level and available area could account for these differences; the possibility of a floodplain in the area then emerged could explain seasonal changes, which would modify the calculations of energetics and abundance
Global Patterns of City Size Distributions and Their Fundamental Drivers
Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity). Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors
Shifting Attention From Theory to Practice in Philosophy of Biology
Traditional approaches in philosophy of biology focus attention on biological concepts, explanations, and theories, on evidential support and inter-theoretical relations. Newer approaches shift attention from concepts to conceptual practices, from theories to practices of theorizing, and from theoretical reduction to reductive retooling. In this article, I describe the shift from theory-focused to practice-centered philosophy of science and explain how it is leading philosophers to abandon fundamentalist assumptions associated with traditional approaches in philosophy of science and to embrace scientific pluralism. This article comes in three parts, each illustrating the shift from theory-focused to practice-centered epistemology. The first illustration shows how shifting philosophical attention to conceptual practice reveals how molecular biologists succeed in identifying coherent causal strands within systems of bewildering complexity. The second illustration suggests that analyzing how a multiplicity of alternative models function in practice provides an illuminating approach for understanding the nature of theoretical knowledge in evolutionary biology. The third illustration demonstrates how framing reductionism in terms of the reductive retooling of practice offers an informative perspective for understanding why putting DNA at the center of biological research has been incredibly productive throughout much of biology. Each illustration begins by describing how traditional theory-focused philosophical approaches are laden with fundamentalist assumptions and then proceeds to show that shifting attention to practice undermines these assumptions and motivates a philosophy of scientific pluralism
- …
