292 research outputs found

    Physical Activity and Obesity Indicators: National Cross Sectional Study on Lebanese Adults

    Full text link
    Association between higher levels of physical activity and lower rates of obesity has been shown. The aim is to assess the relation between the prevalence of physical activity and the Physical Activity Index (PAI) of 300 Lebanese healthy adults, with age, gender, occupation, body mass indices and waist circumferences (WC). The cutoff points of WC for both genders were determined using the values of Body Mass Index (BMI). A cross-sectional study using self-reported valid questionnaire was conducted randomly on 150 men and 150 women, between 18 and 74 years, from Beirut region. Association between variables was performed using chi2, T-Test and ANOVA. Linear regression determined the WC cutoffs based on BMI. 22% of the population was obese with WC mean level of 92.47±14.4cm (87.71±14.4 cm for women and 97.24±12.96 cm for men). The prevalence of physical activity was 34% in overall population (27% in women and 40% in men).There was no significant association between BMI values and PAI (p< 0.085 for men and p< 0.300 for women). However there was an inverse association between WC values and PAI in both genders (p<0.043 in men and p< 0.036 in women). Linear regression showed WC cut-off point in Lebanese women with BMI ≥25 kg/m2 and ≥30 kg/m2 of 86 cm and 100 cm respectively, whereas for men it was 92.12 cm and 105 cm respectively. The prevalence of physical activity in Beirut is low with differences among genders. The highest physical activity index is associated with the decreased values of waist circumference

    Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo.

    Get PDF
    In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment

    Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism

    Get PDF
    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts

    Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome

    Get PDF
    BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTIIPANTS AND MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome

    Enteric Microbiome Metabolites Correlate with Response to Simvastatin Treatment

    Get PDF
    Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy

    Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept

    Get PDF
    The purpose of this study was to determine whether the baseline metabolic profile (that is, metabotype) of a patient with major depressive disorder (MDD) would define how an individual will respond to treatment. Outpatients with MDD were randomly assigned to sertraline (up to 150 mg per day) (N=43) or placebo (N=46) in a double-blind 4-week trial. Baseline serum samples were profiled using the liquid chromatography electrochemical array; the output was digitized to create a ‘digital map' of the entire measurable response for a particular sample. Response was defined as ⩾50% reduction baseline to week 4 in the 17-item Hamilton Rating Scale for Depression total score. Models were built using the one-out method for cross-validation. Multivariate analyses showed that metabolic profiles partially separated responders and non-responders to sertraline or to placebo. For the sertraline models, the overall correct classification rate was 81% whereas it was 72% for the placebo models. Several pathways were implicated in separation of responders and non-responders on sertraline and on placebo including phenylalanine, tryptophan, purine and tocopherol. Dihydroxyphenylacetic acid, tocopherols and serotonin were common metabolites in separating responders and non-responders to both drug and placebo. Pretreatment metabotypes may predict which depressed patients will respond to acute treatment (4 weeks) with sertraline or placebo. Some pathways were informative for both treatments whereas other pathways were unique in predicting response to either sertraline or placebo. Metabolomics may inform the biochemical basis for the early efficacy of sertraline

    Microbiome for Mars: surveying microbiome connections to healthcare with implications for long-duration human spaceflight, virtual workshop, July 13, 2020

    Get PDF
    The inaugural “Microbiome for Mars” virtual workshop took place on July 13, 2020. This event assembled leaders in microbiome research and development to discuss their work and how it may relate to long-duration human space travel. The conference focused on surveying current microbiome research, future endeavors, and how this growing field could broadly impact human health and space exploration. This report summarizes each speaker’s presentation in the order presented at the workshop

    MiMeDB: the Human Microbial Metabolome Database

    Get PDF
    The Human Microbial Metabolome Database (MiMeDB) (https://mimedb.org) is a comprehensive, multi-omic, microbiome resource that connects: (i) microbes to microbial genomes; (ii) microbial genomes to microbial metabolites; (iii) microbial metabolites to the human exposome and (iv) all of these 'omes' to human health. MiMeDB was established to consolidate the growing body of data connecting the human microbiome and the chemicals it produces to both health and disease. MiMeDB contains detailed taxonomic, microbiological and body-site location data on most known human microbes (bacteria and fungi). This microbial data is linked to extensive genomic and proteomic sequence data that is closely coupled to colourful interactive chromosomal maps. The database also houses detailed information about all the known metabolites generated by these microbes, their structural, chemical and spectral properties, the reactions and enzymes responsible for these metabolites and the primary exposome sources (food, drug, cosmetic, pollutant, etc.) that ultimately lead to the observed microbial metabolites in humans. Additional, extensively referenced data about the known or presumptive health effects, measured biosample concentrations and human protein targets for these compounds is provided. All of this information is housed in richly annotated, highly interactive, visually pleasing database that has been designed to be easy to search, easy to browse and easy to navigate. Currently MiMeDB contains data on 626 health effects or bioactivities, 1904 microbes, 3112 references, 22 054 reactions, 24 254 metabolites or exposure chemicals, 648 861 MS and NMR spectra, 6.4 million genes and 7.6 billion DNA bases. We believe that MiMeDB represents the kind of integrated, multi-omic or systems biology database that is needed to enable comprehensive multi-omic integration.Analytical BioScience
    corecore