1,253 research outputs found
Assessment of an electronic voting system within the tutorial setting: a randomised controlled trial (ISRCTN54535861)
Background: Electronic voting systems have been used in various educational settings with little measurement of the educational impact on students. The goal of this study was to measure the effects of the inclusion of an electronic voting system within a small group tutorial. Method: A prospective randomised controlled trial was run at the Royal Adelaide Hospital, a teaching hospital in Adelaide, Australia. 102 students in their first clinical year of medical school participated in the study where an electronic voting system was introduced as a teaching aid into a standard tutorial. Long-term retention of knowledge and understanding of the topics discussed in the tutorials was measured and student response to the introduction of the electronic voting system was assessed. Results: Students using the electronic voting system had improved long-term retention of understanding of material taught in the tutorial. Students had a positive response to the use of this teaching aid. Conclusion: Electronic voting systems can provide a stimulating learning environment for students and in a small group tutorial may improve educational outcomes.Edward J. Palmer, Peter G. Devitt, Neville J. De Young and David Morri
The Explication Defence of Arguments from Reference
In a number of influential papers, Machery, Mallon, Nichols and Stich have presented a powerful critique of so-called arguments from reference, arguments that assume that a particular theory of reference is correct in order to establish a substantive conclusion. The critique is that, due to cross-cultural variation in semantic intuitions supposedly undermining the standard methodology for theorising about reference, the assumption that a theory of reference is correct is unjustified. I argue that the many extant responses to Machery et al.’s critique do little for the proponent of an argument from reference, as they do not show how to justify the problematic assumption. I then argue that it can in principle be justified by an appeal to Carnapian explication. I show how to apply the explication defence to arguments from reference given by Andreasen (for the biological reality of race) and by Churchland (against the existence of beliefs and desires)
Pig producer perspectives on the use of meat inspection as an animal health and welfare diagnostic tool in the Republic of Ireland and Northern Ireland
peer-reviewedBackground
Currently, there is growing interest in developing ante and post mortem meat inspection (MI) to incorporate measures of pig health and welfare for use as a diagnostic tool on pig farms. However, the success of the development of the MI process requires stakeholder engagement with the process. Knowledge gaps and issues of trust can undermine the effective exchange and utilisation of information across the supply chain. A social science research methodology was employed to establish stakeholder perspectives towards the development of MI to include measures of pig health and welfare. In this paper the findings of semi-structured telephone interviews with 18 pig producers from the Republic of Ireland and Northern Ireland are presented.
Results
Producers recognised the benefit of the utilisation of MI data as a health and welfare diagnostic tool. This acknowledgment, however, was undermined for some by dissatisfaction with the current system of MI information feedback, by trust and fairness concerns, and by concerns regarding the extent to which data would be used in the producers’ interests. Tolerance of certain animal welfare issues may also have a negative impact on how producers viewed the potential of MI data. The private veterinary practitioner was viewed as playing a vital role in assisting them with the interpretation of MI data for herd health planning.
Conclusions
The development of positive relationships based on trust, commitment and satisfaction across the supply chain may help build a positive environment for the effective utilisation of MI data in improving pig health and welfare. The utilisation of MI as a diagnostic tool would benefit from the development of a communication strategy aimed at building positive relationships between stakeholders in the pig industry.The authors acknowledge the financial support provided by the Irish Government’s National
Development Plan 2007–2013 (Department of Agriculture, Food and the Marine’s Competitive Research Programme – RSF 11/S/107)
Asymmetric quantum error correction via code conversion
In many physical systems it is expected that environmental decoherence will
exhibit an asymmetry between dephasing and relaxation that may result in qubits
experiencing discrete phase errors more frequently than discrete bit errors. In
the presence of such an error asymmetry, an appropriately asymmetric quantum
code - that is, a code that can correct more phase errors than bit errors -
will be more efficient than a traditional, symmetric quantum code. Here we
construct fault tolerant circuits to convert between an asymmetric subsystem
code and a symmetric subsystem code. We show that, for a moderate error
asymmetry, the failure rate of a logical circuit can be reduced by using a
combined symmetric asymmetric system and that doing so does not preclude
universality.Comment: 5 pages, 8 figures, presentation revised, figures and references
adde
Sliding mode control of quantum systems
This paper proposes a new robust control method for quantum systems with
uncertainties involving sliding mode control (SMC). Sliding mode control is a
widely used approach in classical control theory and industrial applications.
We show that SMC is also a useful method for robust control of quantum systems.
In this paper, we define two specific classes of sliding modes (i.e.,
eigenstates and state subspaces) and propose two novel methods combining
unitary control and periodic projective measurements for the design of quantum
sliding mode control systems. Two examples including a two-level system and a
three-level system are presented to demonstrate the proposed SMC method. One of
main features of the proposed method is that the designed control laws can
guarantee desired control performance in the presence of uncertainties in the
system Hamiltonian. This sliding mode control approach provides a useful
control theoretic tool for robust quantum information processing with
uncertainties.Comment: 18 pages, 4 figure
From quantum fusiliers to high-performance networks
Our objective was to design a quantum repeater capable of achieving one
million entangled pairs per second over a distance of 1000km. We failed, but
not by much. In this letter we will describe the series of developments that
permitted us to approach our goal. We will describe a mechanism that permits
the creation of entanglement between two qubits, connected by fibre, with
probability arbitrarily close to one and in constant time. This mechanism may
be extended to ensure that the entanglement has high fidelity without
compromising these properties. Finally, we describe how this may be used to
construct a quantum repeater that is capable of creating a linear quantum
network connecting two distant qubits with high fidelity. The creation rate is
shown to be a function of the maximum distance between two adjacent quantum
repeaters.Comment: 2 figures, Comments welcom
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
- …
