1,360 research outputs found
Recommended from our members
Limitations to recording larger mammalian predators in savannah using camera traps and spoor
Traditionally, spoor (tracks, pug marks) have been used as a cost effective tool to assess the presence of larger mammals. Automated camera traps are now increasingly utilized to monitor wildlife, primarily as the cost has greatly declined and statistical approaches to data analysis have improved. While camera traps have become ubiquitous, we have little understanding of their effectiveness when compared to traditional approaches using spoor in the field. Here, we a) test the success of camera traps in recording a range of carnivore species against spoor; b) ask if simple measures of spoor size taken by amateur volunteers is likely to allow individual identification of leopards and c) for a trained tracker, ask if this approach may allow individual leopards to be followed with confidence in savannah habitat. We found that camera traps significantly under-recorded mammalian top and meso-carnivores, with camera traps more likely under-record the presence of smaller carnivores (civet 64%; genet 46%, Meller’s mongoose 45%) than larger (jackal sp. 30%, brown hyena 22%), while leopard was more likely to be recorded by camera trap (all recorded by camera trap only). We found that amateur trackers could be beneficial in regards to collecting presence data; however the large variance in measurements of spoor taken in the field by volunteers suggests that this approach is unlikely to add further data. Nevertheless, the use of simple spoor measurements in the field by a trained field researcher increases their ability to reliably follow a leopard trail in difficult terrain. This allows researchers to glean further data on leopard behaviour and habitat utilisation without the need for complex analysis
Contribution of microscopy for understanding the mechanism of action against trypanosomatids
Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin
Comprehensive molecular characterisation of epilepsy-associated glioneuronal tumours
Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations
Enhancing the early student experience
This paper is concerned with identifying how the early student experience can be enhanced in order to improve levels of student retention and achievement. The early student experience is the focus of this project as the literature has consistently declared the first year to be the most critical in shaping persistence decisions. Programme managers of courses with high and low retention rates have been interviewed to identify activities that appear to be associated with good retention rates. The results show that there are similarities in the way programmes with high retention are run, with these features not being prevalent on programmes with low retention. Recommendations of activities that appear likely to enhance the early student experience are provided
The antioxidant activity of some curcuminoids and chalcones
The antioxidant properties of the synthetic compound (C1)–(C8), which comprised 7 curcuminoids and a chalcone, were evaluated by two complementary assays, DPPH and β-carotene/linoleic acid. It was found that, in general, the free radical scavenging ability of (C1)–(C8) was concentration-dependent. Compounds (C1) and (C4), which contained (4-OH) phenolic groups, were found to be highly potent antioxidants with higher antioxidant values than BHT suggesting that synthetic curcuminoids are more potent antioxidants than standard antioxidants like BHT. Using β-carotene-linoleic acid assay, only the water-soluble 2, 4,6-trihydroxyphenolic chalcone (C5) showed 85.2 % inhibition of the formation of conjugated dienes reflecting on its potent antioxidant activity
Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin
The interaction of peroxidized cardiolipin with
ferrocytochrome c induces two kinetically and chemically
distinct processes. The first is a rapid oxidation of ferrocytochrome
c, followed by a slower, irreversible disruption
of heme c. The oxidation of ferrocytochrome c by peroxidized
cardiolipin is explained by a Fenton-type reaction.
Heme scission is a consequence of the radical-mediated
reactions initiated by the interaction of ferric heme iron
with peroxidized cardiolipin. Simultaneously with the
heme c disruption, generation of hydroxyl radical is
detected by EPR spectroscopy using the spin trapping
technique. The resulting apocytochrome c sediments as a
heterogeneous mixture of high aggregates, as judged by
sedimentation analysis. Both the oxidative process and the
destructive process were suppressed by nonionic detergents
and/or high ionic strength. The mechanism for generating
radicals and heme rupture is presented
Contribution of S6K1/MAPK signaling pathways in the response to oxidative stress: activation of RSK and MSK by hydrogen peroxide
Trobareu correccions de l'article a: http://dx.doi.org/10.1371/annotation/0b485bd9-b1b2-4c60-ab22-3ac5d271dc59Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2
Transcriptomic and Epigenetic Regulation of Disuse Atrophy and the Return to Activity in Skeletal Muscle
Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)—administered to the common peroneal nerve—resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-operated controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity
Assessment of the A.E. Watkins wheat collection in 2008 for resistance to foliar, stem base and root diseases. Objectives 2 and 5
- …
