39,878 research outputs found

    Atmospheric refraction effects on baseline error in satellite laser ranging systems

    Get PDF
    Because of the mathematical complexities involved in exact analyses of baseline errors, it is not easy to isolate atmospheric refraction effects; however, by making certain simplifying assumptions about the ranging system geometry, relatively simple expressions can be derived which relate the baseline errors directly to the refraction errors. The results indicate that even in the absence of other errors, the baseline error for intercontinental baselines can be more than an order of magnitude larger than the refraction error

    Epigenetics and chromatin remodeling play a role in lung disease

    Get PDF
    Epigenetics is defined as heritable changes that affect gene expression without altering the DNA sequence. Epigenetic regulation of gene expression is facilitated through different mechanisms such as DNA methylation, histone modifications and RNA-associated silencing by small non-coding RNAs. All these mechanisms are crucial for normal development, differentiation and tissue-specific gene expression. These three systems interact and stabilize one another and can initiate and sustain epigenetic silencing, thus determining heritable changes in gene expression. Histone acetylation regulates diverse cellular functions including inflammatory gene expression, DNA repair and cell proliferation. Transcriptional coactivators possess intrinsic histone acetyltransferase activity and this activity drives inflammatory gene expression. Eleven classical histone deacetylases (HDACs) act to regulate the expression of distinct subsets of inflammatory/immune genes. Thus, loss of HDAC activity or the presence of HDAC inhibitors can further enhance inflammatory gene expression by producing a gene-specific change in HAT activity. For example, HDAC2 expression and activity are reduced in lung macrophages, biopsy specimens, and blood cells from patients with severe asthma and smoking asthmatics, as well as in patients with chronic obstructive pulmonary disease (COPD). This may account, at least in part, for the enhanced inflammation and reduced steroid responsiveness seen in these patients. Other proteins, particularly transcription factors, are also acetylated and are targets for deacetylation by HDACs and sirtuins, a related family of 7 predominantly protein deacetylases. Thus the acetylation/deacetylation status of NF-κB and the glucocorticoid receptor can also affect the overall expression pattern of inflammatory genes and regulate the inflammatory response. Understanding and targeting specific enzymes involved in this process might lead to new therapeutic agents, particularly in situations in which current anti-inflammatory therapies are suboptimal

    Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi

    Full text link
    Intel Xeon Phi is a recently released high-performance coprocessor which features 61 cores each supporting 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical performance of 1Tflop/s in double precision. Many scientific applications involve operations on large sparse matrices such as linear solvers, eigensolver, and graph mining algorithms. The core of most of these applications involves the multiplication of a large, sparse matrix with a dense vector (SpMV). In this paper, we investigate the performance of the Xeon Phi coprocessor for SpMV. We first provide a comprehensive introduction to this new architecture and analyze its peak performance with a number of micro benchmarks. Although the design of a Xeon Phi core is not much different than those of the cores in modern processors, its large number of cores and hyperthreading capability allow many application to saturate the available memory bandwidth, which is not the case for many cutting-edge processors. Yet, our performance studies show that it is the memory latency not the bandwidth which creates a bottleneck for SpMV on this architecture. Finally, our experiments show that Xeon Phi's sparse kernel performance is very promising and even better than that of cutting-edge general purpose processors and GPUs

    Analysis of short pulse laser altimetry data obtained over horizontal path

    Get PDF
    Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter

    Exosomes and Exosomal miRNA in Respiratory Diseases

    Get PDF
    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases

    Higgs bosons of a supersymmetric E6E_6 model at the Large Hadron Collider

    Full text link
    It is found that CP symmetry may be explicitly broken in the Higgs sector of a supersymmetric E6E_6 model with two extra neutral gauge bosons at the one-loop level. The phenomenology of the model, the Higgs sector in particular, is studied for a reasonable parameter space of the model, in the presence of explicit CP violation at the one-loop level. At least one of the neutral Higgs bosons of the model might be produced via the WWWW fusion process at the Large Hadron Collider.Comment: 23 pages, 5 figures, JHE

    Reduced Phagocytic Capacity of Blood Monocyte/Macrophages in Tuberculosis Patients Is Further Reduced by Smoking.

    Get PDF
    Tuberculosis (TB) and tobacco use are two major alarming global health issues posing immense threats to human populations. Mycobacterium tuberculosis (MTB) by activation of macrophages could induce the sequences of cells activation and releases of inflammatory cytokines such as CXCL-8, Il-12 and TNF-α which in turn induces the immune system network. However no information is available on other activity of cells by MTB and smoking. In the current study we aimed to investigate the serum levels TNF-a, CXCL-8 and phagocytosis capacity in tuberculosis patients with and without smoking. 103 subjects entered the study including 61 new diagnosed pulmonary TB patients (23 smokers and 38 nonsmokers) and 42 control healthy subjects. The phagocytosis of fluorescein isothiocyanate dextran (FITC-dextran) in blood monocytes/macrophages through flowcytometry was assessed. Serum levels of TNF-a and CXCL-8 were analyzed by ELISA methods. A lower percentage of cells from TB patients who smoked [50.29% (43.4-57.2), p<0.01] took up FITC-dextran after 2h compared to non-smoking TB subjects [71.62% (69.2-74.1)] and healthy cases [97.45% (95.9-99.1). Phagocytic capacity was inversely correlated with cigarette smoking as measured by pack years (r=-0.73, p<0.001). The serum levels of TNF-a and CXCL-8 were significantly higher in the TB patients who smoked compared to the TB non-smoker group (p<0.001, p<0.01 respectively). Blood monocytes/macrophages from TB patients have reduced phagocytic capacity which is further reduced in TB patients who smoke. Smoking enhanced serum levels of TNF-a and CXCL-8 suggesting a greater imbalance between the proinflammatory and anti-inflammatory factors in these patients

    Spin-orbit torque induced dipole skyrmion motion at room temperature

    Full text link
    We demonstrate deterministic control of dipole-field-stabilized skyrmions by means of spin-orbit torques arising from heavy transition-metal seed layers. Experiments are performed on amorphous Fe/Gd multilayers that are patterned into wires and exhibit stripe domains and dipole skyrmions at room temperature. We show that while the domain walls and skyrmions are achiral on average due to lack of Dzyaloshinskii-Moriya interactions, the N\'eel-like closure domain walls at each surface are chiral and can couple to spin-orbit torques. The current-induced domain evolutions are reported for different magnetic phases, including disordered stripe domains, coexisting stripes and dipole skyrmions and a closed packed dipole skyrmion lattice. The magnetic textures exhibit motion under current excitations with a current density ~10^8 A/m2. By comparing the motion resulting from magnetic spin textures in Fe/Gd films with different heavy transition-metal interfaces, we confirm spin currents can be used to manipulate achiral dipole skyrmions via spin-orbit torques.Comment: 23 pages, 8 figure
    corecore