2,209 research outputs found

    Exclusion Statistics in a two-dimensional trapped Bose gas

    Full text link
    We briefly explain the notion of exclusion statistics and in particular discuss the concept of an ideal exclusion statistics gas. We then review a recent work where it is demonstrated that a {\em two-dimensional} Bose gas with repulsive delta function interactions obeys ideal exclusion statistics, with a fractional parameter related to the interaction strength.Comment: 10 pages, RevTeX. Proceedings of the Salerno workshop "Theory of Quantum Gases and Quantum Coherence", to appear in a special issue of J.Phys. B, Dec. 200

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure

    Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles

    Full text link
    We give two formulations of exclusion statistics (ES) using a variable number of bosonic or fermionic single-particle states which depend on the number of particles in the system. Associated bosonic and fermionic ES parameters are introduced and are discussed for FQHE quasiparticles, anyons in the lowest Landau level and for the Calogero-Sutherland model. In the latter case, only one family of solutions is emphasized to be sufficient to recover ES; appropriate families are specified for a number of formulations of the Calogero-Sutherland model. We extend the picture of variable number of single-particle states to generalized ideal gases with statistical interaction between particles of different momenta. Integral equations are derived which determine the momentum distribution for single-particle states and distribution of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE

    Computing Volume Bounds of Inclusions by EIT Measurements

    Full text link
    The size estimates approach for Electrical Impedance Tomography (EIT) allows for estimating the size (area or volume) of an unknown inclusion in an electrical conductor by means of one pair of boundary measurements of voltage and current. In this paper we show by numerical simulations how to obtain such bounds for practical application of the method. The computations are carried out both in a 2D and a 3D setting.Comment: 20 pages with figure

    Exclusion Statistics in Conformal Field Theory Spectra

    Get PDF
    We propose a new method for investigating the exclusion statistics of quasi-particles in Conformal Field Theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest su(n)su(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest ZNZ_N-invariant CFTs. In special examples, our approach reproduces distributions based on `fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories.Comment: 4 pages, 1 figure, LaTeX (uses revtex

    A class of well-posed parabolic final value problems

    Full text link
    This paper focuses on parabolic final value problems, and well-posedness is proved for a large class of these. The clarification is obtained from Hilbert spaces that characterise data that give existence, uniqueness and stability of the solutions. The data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states. It induces a new compatibility condition, depending crucially on the fact that analytic semigroups always are invertible in the class of closed operators. Lax--Milgram operators in vector distribution spaces constitute the main framework. The final value heat conduction problem on a smooth open set is also proved to be well posed, and non-zero Dirichlet data are shown to require an extended compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a reference update. Conference contribution, based on arXiv:1707.02136, with some further development

    Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models

    Get PDF
    We report about two new rigorous results on the non-analytic properties of thermodynamic potentials at first order phase transition. The first one is valid for lattice models (d2d\geq 2) with arbitrary finite state space, and finite-range interactions which have two ground states. Under the only assumption that the Peierls Condition is satisfied for the ground states and that the temperature is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase transition point. The second result concerns Ising spins with Kac potentials Jγ(x)=γdϕ(γx)J_\gamma(x)=\gamma^d\phi(\gamma x), where 0<γ<10<\gamma<1 is a small scaling parameter, and ϕ\phi a fixed finite range potential. In this framework, we relate the non-analytic behaviour of the pressure at the transition point to the range of interaction, which equals γ1\gamma^{-1}. Our analysis exhibits a crossover between the non-analytic behaviour of finite range models (γ>0\gamma>0) and analyticity in the mean field limit (γ0\gamma\searrow 0). In general, the basic mechanism responsible for the appearance of a singularity blocking the analytic continuation is that arbitrarily large droplets of the other phase become stable at the transition point.Comment: 4 pages, 2 figure

    Synthesis, structure and non-linear optical properties of L-argininium perrhenate crystal

    Get PDF
    A new hybrid organic–inorganic non-linear optical crystalline material, L-argininium perrhenate has been synthesized. The crystal belongs to P212121 space group, has a good optical quality and high transmission in the visible and near infra-red spectral regions. L-argininium perrhenate has high birefringence and is more than four times as efficient as KDP in second harmonic generation, making it a potentially attractive material for non-linear optical applicationsThis work was financially supported by the European Regional Development Fund (ERDF) through Programa Operacional Factores de Competitividade (COMPETE: FCOMP-01-0124-FEDER-014628) and the Portugal Fundacao para a Ciencia e Tecnologia (PTDC/CTM-NAN/114269/2009, PTDC/CTM/105597/2008 and Pest-C/FIS/UI0036/2011)

    K-matrices for non-abelian quantum Hall states

    Get PDF
    Two fundamental aspects of so-called non-abelian quantum Hall states (the q-pfaffian states and more general) are a (generalized) pairing of the participating electrons and the non-abelian statistics of the quasi-hole excitations. In this paper, we show that these two aspects are linked by a duality relation, which can be made manifest by considering the K-matrices that describe the exclusion statistics of the fundamental excitations in these systems.Comment: LaTeX, 12 page

    High nonlinear optical anisotropy of urea nanofibers

    Get PDF
    Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2–4 μm with PVA as the host polymer.This work was carried out in the frame of CIENCIA-2007 program (reference UMINHO-CF06) and financially supported by Fundacao para a Ciencia e Tecnologia, PTDC/CTM/105597/2008
    corecore