242 research outputs found
Harvesting, coupling and control of single exciton coherences in photonic waveguide antennas
We perform coherent non-linear spectroscopy of individual excitons strongly
confined in single InAs quantum dots (QDs). The retrieval of their
intrinsically weak four-wave mixing (FWM) response is enabled by a
one-dimensional dielectric waveguide antenna. Compared to a similar QD embedded
in bulk media, the FWM detection sensitivity is enhanced by up to four orders
of magnitude, over a broad operation bandwidth. Three-beam FWM is employed to
investigate coherence and population dynamics within individual QD transitions.
We retrieve their homogenous dephasing in a presence of spectral wandering.
Two-dimensional FWM reveals off-resonant F\"orster coupling between a pair of
distinct QDs embedded in the antenna. We also detect a higher order QD
non-linearity (six-wave mixing) and use it to coherently control the FWM
transient. Waveguide antennas enable to conceive multi-color coherent
manipulation schemes of individual emitters.Comment: 7 pages, 8 Figure
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Antireflective photonic structure for coherent nonlinear spectroscopy of single magnetic quantum dots
This work presents epitaxial growth and optical spectroscopy of CdTe quantum
dots (QDs) in (Cd,Zn,Mg)Te barriers placed on the top of (Cd,Zn,Mg)Te
distributed Bragg reflector. The formed photonic mode in our half-cavity
structure permits to enhance the local excitation intensity and extraction
efficiency of the QD photoluminescence, while suppressing the reflectance
within the spectral range covering the QD transitions. This allows to perform
coherent, nonlinear, resonant spectroscopy of individual QDs. The coherence
dynamics of a charged exciton is measured via four-wave mixing, with the
estimated dephasing time ps. The same structure contains
QDs doped with single Mn ions, as detected in photoluminescence spectra.
Our work therefore paves the way toward investigating and controlling an
exciton coherence coupled, via ,- exchange interaction, with an
individual spin of a magnetic dopant.Comment: 6 pages, 5 figure
Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point
We determine the nature of the magnetic quantum critical point in the doped
LaFeAsO using a set of constrained density functional calculations that provide
ab initio coefficients for a Landau order parameter analysis. The system turns
out to be remarkably close to a quantum tricritical point, where the nature of
the phase transition changes from first to second order. We compare with the
effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure
Fermi surface instabilities at finite Temperature
We present a new method to detect Fermi surface instabilities for interacting
systems at finite temperature. We first apply it to a list of cases studied
previously, recovering already known results in a very economic way, and
obtaining most of the information on the phase diagram analytically. As an
example, in the continuum limit we obtain the critical temperature as an
implicit function of the magnetic field and the chemical potential
. By applying the method to a model proposed to describe reentrant
behavior in , we reproduce the phase diagram obtained
experimentally and show the presence of a non-Fermi Liquid region at
temperatures above the nematic phase.Comment: 10 pages, 10 figure
Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects : influence of the excitation intensity
We acknowledge the financial support by the European Research Council (ERC) Starting Grant PICSEN (grant no. 306387)The exact optical response of quantum few-level systems depends crucially on the exact choice of the incoming pulse areas. We use four-wave mixing (FWM) spectroscopy to infer the coherent response and dynamics of single InAs quantum dots (QDs) and study their pulse area dependence. By combining atomic force microscopy with FWM hyperspectral imaging, we show that the retrieved FWM signals originate from individual QDs enclosed in natural photonic defects. The optimized light-matter coupling in these defects allows us to perform our studies in a wide range of driving field amplitudes. When varying the pulse areas of the exciting laser pulses Rabi rotations of microscopic interband coherences can be resolved by the two-pulse FWM technique. We investigate these Rabi coherence rotations within two- and three-level systems, both theoretically and experimentally, and explain their damping by the coupling to acoustic phonons. To highlight the importance of the pulse area in uence, we show that the phonon-induced dephasing of QD excitons depends on the pulse intensity.PostprintPeer reviewe
Scaling laws near the conformal window of many-flavor QCD
We derive universal scaling laws for physical observables such as the
critical temperature, the chiral condensate, and the pion decay constant as a
function of the flavor number near the conformal window of many-flavor QCD in
the chiral limit. We argue on general grounds that the associated critical
exponents are all interrelated and can be determined from the critical exponent
of the running gauge coupling at the Caswell-Banks-Zaks infrared fixed point.
We illustrate our findings with the aid of nonperturbative functional
Renormalization Group (RG) calculations and low-energy QCD models.Comment: 18 pages, 4 figures, references added and discussion expanded
(matches JHEP version
Drying of a Microdroplet of Water Suspension of Nanoparticles: from Surface Aggregates to Microcrystal
The method of formation of nanoparticle aggregates such as high-coverage
spherical shells of microspheres or 3-D micro crystals grown in the geometry
unaffected by a substrate is described. In the reported experiment, the
evaporation of single levitated water droplet containing 200 nm diameter
polystyrene spheres was studied. Successive stages of the drying process were
discussed by analyzing the intensity of light elastically scattered by the
evaporating droplet. The numerically simulated self-assembly coincides nicely
with the observed morphologies resulting from transformation of a droplet of
suspension into a solid microcrystal via kinetically driven self-assembly of
nanostructures.Comment: 5 pages, 6 figure
- …
