1,766 research outputs found
Pressure-induced hole doping of the Hg-based cuprate superconductors
We investigate the electronic structure and the hole content in the
copper-oxygen planes of Hg based high Tc cuprates for one to four CuO2 layers
and hydrostatic pressures up to 15 GPa. We find that with the pressure-induced
additional number of holes of the order of 0.05e the density of states at the
Fermi level changes approximately by a factor of 2. At the same time the saddle
point is moved to the Fermi level accompanied by an enhanced k_z dispersion.
This finding explains the pressure behavior of Tc and leads to the conclusion
that the applicability of the van Hove scenario is restricted. By comparison
with experiment, we estimate the coupling constant to be of the order of 1,
ruling out the weak coupling limit.Comment: 4 pages, 4 figure
The mass, colour, and structural evolution of today's massive galaxies since z~5
In this paper, we use stacking analysis to trace the mass-growth, colour
evolution, and structural evolution of present-day massive galaxies
() out to . We utilize the exceptional depth
and area of the latest UltraVISTA data release, combined with the depth and
unparalleled seeing of CANDELS to gather a large, mass-selected sample of
galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day
massive galaxies are identified via an evolving cumulative number density
selection, which accounts for the effects of merging to correct for the
systematic biases introduced using a fixed cumulative number density selection,
and find progenitors grow in stellar mass by since
. Using stacking, we analyze the structural parameters of the progenitors
and find that most of the stellar mass content in the central regions was in
place by , and while galaxies continue to assemble mass at all radii,
the outskirts experience the largest fractional increase in stellar mass.
However, we find evidence of significant stellar mass build up at
probing an era of significant mass assembly in
the interiors of present day massive galaxies. We also compare mass assembly
from progenitors in this study to the EAGLE simulation and find qualitatively
similar assembly with at . We identify as a
distinct epoch in the evolution of massive galaxies where progenitors
transitioned from growing in mass and size primarily through in-situ star
formation in disks to a period of efficient growth in consistent with
the minor merger scenario.Comment: 19 pages, 14 figures, accepted for publicatio
Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z~2
Quiescent galaxies at z~2 have been identified in large numbers based on
rest-frame colors, but only a small number of these galaxies have been
spectroscopically confirmed to show that their rest-frame optical spectra show
either strong Balmer or metal absorption lines. Here, we median stack the
rest-frame optical spectra for 171 photometrically-quiescent galaxies at 1.4 <
z < 2.2 from the 3D-HST grism survey. In addition to Hbeta (4861A), we
unambiguously identify metal absorption lines in the stacked spectrum,
including the G-band (4304A), Mg I (5175A), and Na I (5894A). This finding
demonstrates that galaxies with relatively old stellar populations already
existed when the universe was ~3 Gyr old, and that rest-frame color selection
techniques can efficiently select them. We find an average age of 1.3^0.1_0.3
Gyr when fitting a simple stellar population to the entire stack. We confirm
our previous result from medium-band photometry that the stellar age varies
with the colors of quiescent galaxies: the reddest 80% of galaxies are
dominated by metal lines and have a relatively old mean age of 1.6^0.5_0.4 Gyr,
whereas the bluest (and brightest) galaxies have strong Balmer lines and a
spectroscopic age of 0.9^0.2_0.1 Gyr. Although the spectrum is dominated by an
evolved stellar population, we also find [OIII] and Hbeta emission.
Interestingly, this emission is more centrally concentrated than the continuum
with L_[OIII] = 1.7 +/- 0.3 x 10^40 erg s^-1, indicating residual central star
formation or nuclear activity.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical
Journal Letter
Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5<z<2.5
In this paper, we investigate the relationship between star formation and
structure, using a mass-complete sample of 27,893 galaxies at
selected from 3D-HST. We confirm that star-forming galaxies are larger than
quiescent galaxies at fixed stellar mass (M). However, in contrast
with some simulations, there is only a weak relation between star formation
rate (SFR) and size within the star-forming population: when dividing into
quartiles based on residual offsets in SFR, we find that the sizes of
star-forming galaxies in the lowest quartile are 0.270.06 dex smaller than
the highest quartile. We show that 50% of star formation in galaxies at fixed
M takes place within a narrow range of sizes (0.26 dex). Taken
together, these results suggest that there is an abrupt cessation of star
formation after galaxies attain particular structural properties. Confirming
earlier results, we find that central stellar density within a 1 kpc fixed
physical radius is the key parameter connecting galaxy morphology and star
formation histories: galaxies with high central densities are red and have
increasingly lower SFR/M, whereas galaxies with low central densities
are blue and have a roughly constant (higher) SFR/M at a given
redshift. We find remarkably little scatter in the average trends and a strong
evolution of 0.5 dex in the central density threshold correlated with
quiescence from . Neither a compact size nor high- are
sufficient to assess the likelihood of quiescence for the average galaxy;
rather, the combination of these two parameters together with M
results in a unique quenching threshold in central density/velocity.Comment: 20 pages, 15 figures, and 2 tables; Accepted for publication in the
Astrophysical Journa
S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey
(S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect
galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic
variance and also to take advantage of deep coextensive coverage in multiple
bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS,
S-CANDELS was carried out within five widely separated extragalactic fields:
the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS,
the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon
the existing coverage of these fields from the Spitzer Extended Deep Survey
(SEDS) by increasing the integration time from 12 hours to a total of 50 hours
but within a smaller area, 0.16 square degrees. The additional depth
significantly increases the survey completeness at faint magnitudes. This paper
describes the S-CANDELS survey design, processing, and publicly-available data
products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth
of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by
S-CANDELS are consistent with models based on known galaxy populations. The
increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a
significant additional contribution from discrete sources to the diffuse Cosmic
Infrared Background (CIB). Thus it remains true that only roughly half of the
estimated CIB flux from COBE/DIRBE is resolved.Comment: 23 pages, 19 figures, accepted by ApJ
A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample
We investigate the nature of the substantial population of high-z galaxies
with Js-Ks>2.3 discovered as part of our FIRES survey. This colour cut
efficiently isolates z>2 galaxies with red rest-frame optical colors ("Distant
Red Galaxies" or DRGs). We select objects in the 2.5'x2.5' HDF-South (HDF-S)
and 5'x5' field around the MS1054-03 cluster; the surface densities at Ks<21
are 1.6+-0.6 and 1.0+-0.2 arcmin^-2. We discuss the 34 DRGs at 2<z<3.5: 11 at
Ks<22.5 in HDF-S and 23 at Ks<21.7 in the MS1054-03 field. We analyze the SEDs
constructed from our deep near-infrared (NIR) and optical imaging from the ESO
VLT and HST. We develop diagnostics involving I-Js, Js-H, and H-Ks to argue
that the red NIR colors of DRGs cannot be attributed solely to extinction and
require for many an evolved stellar population with prominent Balmer/4000A
break. In the rest-frame, the optical colours of DRGs fall within the envelope
of normal nearby galaxies and the UV colours suggest a wide range in star
formation activity and/or extinction. This contrasts with the much bluer and
more uniform SEDs of Lyman break galaxies (LBGs). From evolutionary synthesis
models with constant star formation, solar metallicity, Salpeter IMF, and
Calzetti et al. extinction law, we derive for the HDF-S (MS1054-03 field) DRGs
median ages of 1.7(2.0) Gyr, A_V = 2.7(2.4) mag, stellar masses 0.8(1.6)x10^11
Msun, M/L_V = 1.2(2.3) Msun/LVsun, and SFR = 120(170) Msun/yr. Models assuming
declining SFRs with e-folding timescales of 10Myr-1Gyr generally imply younger
ages, lower A_V's and SFRs, but similar stellar masses within a factor of two.
Compared to LBGs at similar redshifts and rest-frame L_V's, DRGs are older,
more massive, and more obscured for any given star formation history.
[ABRIDGED]Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 14
b/w figure
Right to Serve, Right to Lead: Lives and Legacies of the USCT
This is a catalog for an exhibit that follows the evolution of African-American participation in the Civil War, from slaves, to contrabands, to soldiers of the United States Colored Troops (USCT), as well as the lives of black veterans beyond the war, and their ultimate military and social legacy. Using a variety of period items, it creates a narrative that stretches from the Antebellum Period to the current day. In doing so, the exhibit shows how black sacrifice on the battlefield redefined the war\u27s purpose throughout the divided nation, how Jim Crowe suppressed the memory of black participation after Reconstruction, and how the illustrious African-American military tradition left by the USCT endures to this day in their modern heirs
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews
Exclusive neuronal expression of SUCLA2 in the human brain
SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex
- …
