12,328 research outputs found
Quasiparticle interference and the interplay between superconductivity and density wave order in the cuprates
Scanning tunneling spectroscopy (STS) is a useful probe for studying the
cuprates in the superconducting and pseudogap states. Here we present a
theoretical study of the Z-map, defined as the ratio of the local density of
states at positive and negative bias energies, which frequently is used to
analyze STS data. We show how the evolution of the quasiparticle interference
peaks in the Fourier transform Z-map can be understood by considering different
types of impurity scatterers, as well as particle-hole asymmetry in the
underlying bandstructure. We also explore the effects of density wave orders,
and show that the Fourier transform Z-map may be used to both detect and
distinguish between them.Comment: final version published in Phys. Rev.
Optimized gating and reference ranges of reticulated platelets in dogs for the Sysmex XT-2000iV
Background: Canine reticulated platelets (r-PLTs) i.e., juvenile PLTs reflecting thrombopoiesis can be measured automatically with the hematology analyzer Sysmex XT-2000iV using manual gating options. However, the impact of interferences on r-PLT measurements performed with the gates published previously (Pankraz et al., Vet Clin Path 38:3038, 2009; Gelain et al., High fluorescent platelets fraction in macrothrombocytopenic Norfolk terrier, 2010) is largely unknown. The aim was to compare different published gates for measurement of r-PLTs with the Sysmex XT-2000iV with an own, optimized gate (Oellers-gate) and to establish reference intervals (RIs) in>120 dogs. Data of 362 measurements of diseased and healthy dogs were analyzed retrospectively. Several gates were applied and RIs for r-PLTs and platelet indices were established for pet dogs and a group of 153 healthy Beagles kept under defined housing conditions. Intra-assay precision (CV) was also assessed. Results: In 30/362 samples, interferences consistent with small erythrocytes/reticulocytes were seen in the previously published gates but not in the Oellers-gate. Good correlation was found between the different gates (rs: 0.881.00). RIs for the Pankraz-gate, the Gelain-gate, and the Oellers-gate were 0.01.2, 0.23.7 and 0.23.9 % respectively. CVs were ranging between 22 and 41 %. Conclusions: Optimization of previously published gates minimized interferences of small erythrocytes with r-PLT measurements
Fermionic WIMPs and Vacuum Stability in the Scotogenic Model
We demonstrate that the condition of vacuum stability severely restricts
scenarios with fermionic WIMP dark matter in the scotogenic model. The sizable
Yukawa couplings that are required to satisfy the dark matter constraint via
thermal freeze-out in these scenarios tend to destabilise the vacuum at scales
below that of the heaviest singlet fermion, rendering the model inconsistent
from a theoretical point of view. By means of a scan over the parameter space,
we study the impact of these renormalisation group effects on the viable
regions of this model. Our analysis shows that a fraction of more than 90% of
the points compatible with all known experimental constraints - including
neutrino masses, the dark matter density, and lepton flavour violation - is
actually inconsistent.Comment: 8 pages, 6 figures; content matches published versio
Detecting multi-atomic composite states in optical lattices
We propose and discuss methods for detecting quasi-molecular complexes which
are expected to form in strongly interacting optical lattice systems.
Particular emphasis is placed on the detection of composite fermions forming in
Bose-Fermi mixtures. We argue that, as an indirect indication of the composite
fermions and a generic consequence of strong interactions, periodic
correlations must appear in the atom shot noise of bosonic absorption images,
similar to the bosonic Mott insulator [S. F\"olling, et al., Nature {\bf 434},
481 (2005)]. The composites can also be detected directly and their
quasi-momentum distribution measured. This method -- an extension of the
technique of noise correlation interferometry [E. Altman et al., Phys. Rev. A
{\bf 79}, 013603 (2004)] -- relies on measuring higher order correlations
between the bosonic and fermionic shot noise in the absorption images. However,
it fails for complexes consisting of more than three atoms.Comment: 9 revtex page
Local regularity for parabolic nonlocal operators
Weak solutions to parabolic integro-differential operators of order are studied. Local a priori estimates of H\"older norms and
a weak Harnack inequality are proved. These results are robust with respect to
. In this sense, the presentation is an extension of Moser's
result in 1971.Comment: 31 pages, 3 figure
- …
