1,213 research outputs found

    Model based system engineering approach of a lightweight embedded TCP/IP

    Full text link
    The use of embedded software is growing very rapidly. Accessing the internet is a necessary service which has large range of applications in many fields. The Internet is based on TCP/IP which is a very important stack. Although TCP/IP is very important there is not a software engineering model describing it. The common method in modeling and describing TCP/IP is RFCs which is not sufficient for software engineer and developers. Therefore there is a need for software engineering approach to help engineers and developers to customize their own web based applications for embedded systems. This research presents a model based system engineering approach of lightweight TCP/IP. The model contains the necessary phases for developing a lightweight TCP/IP for embedded systems. The proposed model is based on SysML as a model based system engineering language

    Line and Continuum Variability in Active Galaxies

    Full text link
    We compared optical spectroscopic and photometric data for 18 AGN galaxies over 2 to 3 epochs, with time intervals of typically 5 to 10 years. We used the Multi-Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT) and compared the spectra to data taken from the SDSS database and the literature. We find variations in the forbidden oxygen lines as well as in the hydrogen recombination lines of these sources. For 4 of the sources we find that, within the calibration uncertainties, the variations in continuum and line spectra of the sources are very small. We argue that it is mainly the difference in black hole mass between the samples that is responsible for the different degree of continuum variability. In addition we find that for an otherwise constant accretion rate the total line variability (dominated by the narrow line contributions) reverberates the continuum variability with a dependency ΔLline(ΔLcont.)32\Delta L_{line} \propto (\Delta L_{cont.})^{\frac{3}{2}}. Since this dependency is prominently expressed in the narrow line emission it implies that the luminosity dominating part of the narrow line region must be very compact with a size of the order of at least 10 light years. A comparison to literature data shows that these findings describe the variability characteristics of a total of 61 broad and narrow line sources.Comment: 30 pages including the appendix, 18 figures including the appendix. Accepted 2015 September 3. Received 2015 August 24; in original form 2015 July 3 in Monthly Notices of the Royal Astronomical Societ

    Towards high-resolution synchrotron radiation imaging with statistical iterative reconstruction

    Get PDF
    Synchrotron radiation (SR) X-ray micro-computed tomography (CT) is an effective imaging modality for high-resolution investigation of small objects, with several applications in medicine, biology and industry. However, the limited size of the detector field of view (FOV) restricts the sample dimensions to only a few millimeters. When the sample size is larger than the FOV, images reconstructed using conventional methods suffer from DC-shift and low-frequency artifacts. This classical problem is known as the local tomography or the interior problem. In this paper, a statistical iterative reconstruction method is introduced to eliminate image artifacts resulting from the local tomography. The proposed method, which can be used in several SR imaging applications, enables high-resolution SR imaging with superior image quality compared with conventional methods. Real data obtained from different SR micro-CT applications are used to evaluate the proposed method. Results indicate a noteworthy quality improvement in the image reconstructed from the local tomography measurements

    Partially Demineralized Macroporous (PDM) Allografts for Cranial Tissue Engineering

    Get PDF
    poster abstractDecompressive Craniectomy is a cranial surgery where a large part of the cranial bone is removed in order to mitigate swelling in the brain tissue. Consequently, a scaffold biomaterial is required to substitute the lost bone. Ideal cranioplasty biomaterials should have the following features: fit the cranial defect and achieve complete closure, radiolucency, resistance to infections, no dilation with heat, resistance to biomechanical wear, pliability, and inexpensive. Partially Demineralized Macroporous (PDM) allografts exhibit such properties to correct these cranial defects. The main objectives of this study include: (1) examining the effects of demineralization and macroporosity formations on the mechanical and biological properties of allograft bone disks; (2) conducting finite element analysis (FEA) to stimulate the mechanical properties of the PDM allografts; and (3) evaluating the in vitro response of the PDM allografts utilizing pre-osteoblast cell lines. Tibias were harvested from Ossabaw mini-pigs and cylindrical cortical bone sections of 2 mm in thickness and 8 mm in diameter were obtained. Macropores of 600 micrometers in diameter were created to generate porosity levels of 0-40% in the bone disks. The bone disks were then demineralized in 14-wt% EDTA for 6 to 48 hours at 37℃. The relative stiffness was determined for each class using a material testing machine with a loading rate of 1 mm/min using a piston-on-ring set up. To analyze the deformation characteristics, FEA software LS-DYNA was employed. In order to understand the in vitro response, biocompatibility of PDM scaffolds were evaluated by culturing MC3T3-E1 cell lines where XTT and ALP assays were conducted. PDM allografts display the suitable stiffness required for cranial defects. The PDM allograft scaffolds aid in osteogenic proliferation and differentiation of pre-osteoblast cell lines in vitro. However, there will be further in vivo testing regarding the validity of PDM allografts in rat cranial defects. Mentor: Tien-Min Gabriel Chu, Department of Restorative DentistryDecompressive Craniectomy is a cranial surgery where a large part of the cranial bone is removed in order to mitigate swelling in the brain tissue. Consequently, a scaffold biomaterial is required to substitute the lost bone. Ideal cranioplasty biomaterials should have the following features: fit the cranial defect and achieve complete closure, radiolucency, resistance to infections, no dilation with heat, resistance to biomechanical wear, pliability, and inexpensive. Partially Demineralized Macroporous (PDM) allografts exhibit such properties to correct these cranial defects. The main objectives of this study include: (1) examining the effects of demineralization and macroporosity formations on the mechanical and biological properties of allograft bone disks; (2) conducting finite element analysis (FEA) to stimulate the mechanical properties of the PDM allografts; and (3) evaluating the in vitro response of the PDM allografts utilizing pre-osteoblast cell lines. Tibias were harvested from Ossabaw mini-pigs and cylindrical cortical bone sections of 2 mm in thickness and 8 mm in diameter were obtained. Macropores of 600 micrometers in diameter were created to generate porosity levels of 0-40% in the bone disks. The bone disks were then demineralized in 14-wt% EDTA for 6 to 48 hours at 37℃. The relative stiffness was determined for each class using a material testing machine with a loading rate of 1 mm/min using a piston-on-ring set up. To analyze the deformation characteristics, FEA software LS-DYNA was employed. In order to understand the in vitro response, biocompatibility of PDM scaffolds were evaluated by culturing MC3T3-E1 cell lines where XTT and ALP assays were conducted. PDM allografts display the suitable stiffness required for cranial defects. The PDM allograft scaffolds aid in osteogenic proliferation and differentiation of pre-osteoblast cell lines in vitro. However, there will be further in vivo testing regarding the validity of PDM allografts in rat cranial defects

    Analysis of ischaemic crisis using the informational causal entropy-complexity plane

    Get PDF
    In the present work, an ischaemic process, mainly focused on the reperfusion stage, is studied using the informational causal entropy-complexity plane. Ischaemic wall behavior under this condition was analyzed through wall thickness and ventricular pressure variations, acquired during an obstructive flow maneuver performed on left coronary arteries of surgically instrumented animals. Basically, the induction of ischaemia depends on the temporary occlusion of left circumflex coronary artery (which supplies blood to the posterior left ventricular wall) that lasts for a few seconds. Normal perfusion of the wall was then reestablished while the anterior ventricular wall remained adequately perfused during the entire maneuver. The obtained results showed that system dynamics could be effectively described by entropy-complexity loops, in both abnormally and well perfused walls. These results could contribute to making an objective indicator of the recovery heart tissues after an ischaemic process, in a way to quantify the restoration of myocardial behavior after the supply of oxygen to the ventricular wall was suppressed for a brief period.Fil: Legnani, Walter. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Universidad Nacional de Lanús; ArgentinaFil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Cymberknop, Leandro Javier. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; ArgentinaFil: Rosso, Osvaldo Aníbal. Universidad de los Andes; Chile. Universidade Federal de Alagoas; Brasil. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Experimental Indicators of Accretion Processes in Active Galactic Nuclei

    Full text link
    Bright Active Galactic Nuclei are powered by accretion of mass onto the super massive black holes at the centers of the host galaxies. For fainter objects star formation may significantly contribute to the luminosity. We summarize experimental indicators of the accretion processes in Active Galactic Nuclei (AGN), i.e., observable activity indicators that allow us to conclude on the nature of accretion. The Galactic Center is the closest galactic nucleus that can be studied with unprecedented angular resolution and sensitivity. Therefore, here we also include the presentation of recent observational results on Sagittarius A* and the conditions for star formation in the central stellar cluster. We cover results across the electromagnetic spectrum and find that the Sagittarius A* (SgrA*) system is well ordered with respect to its geometrical orientation and its emission processes of which we assume to reflect the accretion process onto the super massive black hole.Comment: 16 pages, 4 figures, conference proceeding: Accretion Processes in Cosmic Sources - APCS2016 - 5-10 September 2016, Saint Petersburg, Russi

    Heme oxygenase effect on mesenchymal stem cells action on experimental Alzheimer's disease

    Get PDF
    The objective is to evaluate the effect of heme oxygenase-1 (HO-1) enzyme inducer and inhibitor on Mesenchymal Stem Cells (MSCs) in Alzheimer disease. Materials and Methods: 70 female albino rats were divided equally into 7 groups as follows: group 1: healthy control; group 2: Aluminium chloride induced Alzheimer disease; group 3: induced Alzheimer rats that received intravenous injection of MSCs; group 4: induced Alzheimer rats that received MSCs and HO inducer cobalt protoporphyrin; group 5: induced Alzheimer rats that received MSCs and HO inhibitor zinc protoporphyrin; group 6: induced Alzheimer rats that received HO inducer; group7: induced Alzheimer rats that received HO inhibitor. Brain tissue was collected for HO-1, seladin-1 gene expression by real time polymerase chain reaction, heme oxygenase activity, cholesterol estimation and histopathological examination. Results: MSCs decreased the plaque lesions, heme oxygenase induction with stem cells also decreased plaque lesions however there was hemorrhage in the brain. Both heme oxygenase inducer alone or with stem cells increased seladin-1 expression and decreased cholesterol level. Conclusion: MSCs alone or with HO-1 induction exert a therapeutic effect against the brain lesion in Alzheimer’s disease possibly through decreasing the brain cholesterol level and increasing seladin-1 gene expression
    corecore