472 research outputs found
Sagnac effect in a chain of mesoscopic quantum rings
The ability to interferometrically detect inertial rotations via the Sagnac
effect has been a strong stimulus for the development of atom interferometry
because of the potential 10^{10} enhancement of the rotational phase shift in
comparison to optical Sagnac gyroscopes. Here we analyze ballistic transport of
matter waves in a one dimensional chain of N coherently coupled quantum rings
in the presence of a rotation of angular frequency, \Omega. We show that the
transmission probability, T, exhibits zero transmission stop gaps as a function
of the rotation rate interspersed with regions of rapidly oscillating finite
transmission. With increasing N, the transition from zero transmission to the
oscillatory regime becomes an increasingly sharp function of \Omega with a
slope \partialT/\partial \Omega N^2. The steepness of this slope dramatically
enhances the response to rotations in comparison to conventional single ring
interferometers such as the Mach-Zehnder and leads to a phase sensitivity well
below the standard quantum limit
Molecule formation as a diagnostic tool for second order correlations of ultra-cold gases
We calculate the momentum distribution and the second-order correlation
function in momentum space, for molecular dimers
that are coherently formed from an ultracold atomic gas by photoassociation or
a Feshbach resonance. We investigate using perturbation theory how the quantum
statistics of the molecules depend on the initial state of the atoms by
considering three different initial states: a Bose-Einstein condensate (BEC), a
normal Fermi gas of ultra-cold atoms, and a BCS-type superfluid Fermi gas. The
cases of strong and weak coupling to the molecular field are discussed. It is
found that BEC and BCS states give rise to an essentially coherent molecular
field with a momentum distribution determined by the zero-point motion in the
confining potential. On the other hand, a normal Fermi gas and the unpaired
atoms in the BCS state give rise to a molecular field with a broad momentum
distribution and thermal number statistics. It is shown that the first-order
correlations of the molecules can be used to measure second-order correlations
of the initial atomic state.Comment: revtex, 15 pages,8 figure
Spin current and shot noise from a quantum dot coupled to a quantized cavity field
We examine the spin current and the associated shot noise generated in a
quantum dot connected to normal leads with zero bias voltage across the dot.
The spin current is generated by spin flip transitions induced by a quantized
electromagnetic field inside a cavity with one of the Zeeman states lying below
the Fermi level of the leads and the other above. In the limit of strong
Coulomb blockade, this model is analogous to the Jaynes-Cummings model in
quantum optics. We also calculate the photon current and photon current shot
noise resulting from photons leaking out of the cavity. We show that the photon
current is equal to the spin current and that the spin current can be
significantly larger than for the case of a classical driving field as a result
of cavity losses. In addition to this, the frequency dependent spin (photon)
current shot noise show dips (peaks) that are a result of the discrete nature
of photons
Phase Conjugation of a Quantum-Degenerate Atomic Fermi Beam
We discuss the possibility of phase-conjugation of an atomic Fermi field via
nonlinear wave mixing in an ultracold gas. It is shown that for a beam of
fermions incident on an atomic phase-conjugate mirror, a time reversed backward
propagating fermionic beam is generated similar to the case in nonlinear
optics. By adopting an operational definition of the phase, we show that it is
possible to infer the presence of the phase-conjugate field by the loss of the
interference pattern in an atomic interferometer
A two measure model of dark energy and dark matter
In this work we construct a unified model of dark energy and dark matter.
This is done with the following three elements: a gravitating scalar field, phi
with a non-conventional kinetic term, as in the string theory tachyon; an
arbitrary potential, V(phi); two measures -- a metric measure (sqrt{-g}) and a
non-metric measure (Phi). The model has two interesting features: (i) For
potentials which are unstable and would give rise to tachyonic scalar field,
this model can stabilize the scalar field. (ii) The form of the dark energy and
dark matter that results from this model is fairly insensitive to the exact
form of the scalar field potential.Comment: 8 pages,no figures, revtex, typos corrected to match published
versio
Discriminating Electroweak-ino Parameter Ordering at the LHC and Its Impact on LFV Studies
Current limit on the dark matter relic abundance may suggest that
should be smaller than prediction in the minimal supergravity scenario (mSUGRA)
for moderate and . The electroweak-ino parameter and
are then much closer to each other. This can be realized naturally in
the non-universal Higgs mass model (NUHM). Since the heaviest neutralino
() and chargino () have significant gaugino
components, they may appear frequently in the left-handed squark decay and then
be detectable at the LHC. In such a case, we showed that the hierarchy of and can be determined. In the light slepton mass scenario with
non-vanishing lepton-flavor violation (LFV) in the right-handed sector, NUHM
with small corresponds to region of parameter space where strong
cancellation among leading contributions to can occur. We
showed that determination of electroweak-ino hierarchy plays a crucial role in
resolving cancellation point of and determination of LFV
parameters. We also discussed test of the universality of the slepton masses at
the LHC and the implications to SUSY flavor models.Comment: 34 pages, 16 figure
Cosmological Evolution of a Tachyon-Quintom Model of Dark Energy
In this work we study the cosmological evolution of a dark energy model with
two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables
the equation of state to change from to in the evolution of
the universe. The phase-space analysis for such a system with inverse square
potentials shows that there exists a unique stable critical point, which has
power-law solutions. In this paper, we also study another form of
tachyon-quintom model with two fields, which voluntarily involves the
interactions between both fields.Comment: 17 pages, 10 figure
Induced Gravity and the Attractor Dynamics of Dark Energy/Dark Matter
Attractor solutions that give dynamical reasons for dark energy to act like
the cosmological constant, or behavior close to it, are interesting
possibilities to explain cosmic acceleration. Coupling the scalar field to
matter or to gravity enlarges the dynamical behavior; we consider both
couplings together, which can ameliorate some problems for each individually.
Such theories have also been proposed in a Higgs-like fashion to induce gravity
and unify dark energy and dark matter origins. We explore restrictions on such
theories due to their dynamical behavior compared to observations of the cosmic
expansion. Quartic potentials in particular have viable stability properties
and asymptotically approach general relativity.Comment: 11 pages, 10 figures, accepted in JCAP, results unchanged, an
explanation added on perfect fluids for general spinor Lagrangian
Direct Measurement of the Positive Acceleration of the Universe and Testing Inhomogeneous Models under Gravitational Wave Cosmology
One possibility for explaining the apparent accelerating expansion of the
universe is that we live in the center of a spherically inhomogeneous universe.
Although current observations cannot fully distinguish CDM and these
inhomogeneous models, direct measurement of the acceleration of the universe
can be a powerful tool in probing them. We have shown that, if CDM is
the correct model, DECIGO/BBO would be able to detect the positive redshift
drift (which is the time evolution of the source redshift ) in 3--5 year
gravitational wave (GW) observations from neutron-star binaries, which enables
us to rule out any Lema\^itre-Tolman-Bondi (LTB) void model with monotonically
increasing density profile. We may even be able to rule out any LTB model
unless we allow unrealistically steep density profile at . This test
can be performed with GW observations alone, without any reference to
electromagnetic observations, and is more powerful than the redshift drift
measurement using Lyman forest.Comment: 5 pages, 2 figure
Measuring dark energy spatial inhomogeneity with supernova data
The gravitational lensing distortion of distant sources by the large-scale
distribution of matter in the Universe has been extensively studied. In
contrast, very little is known about the effects due to the large-scale
distribution of dark energy. We discuss the use of Type Ia supernovae as probes
of the spatial inhomogeneity and anisotropy of dark energy. We show that a
shallow, almost all-sky survey can limit rms dark energy fluctuations at the
horizon scale down to a fractional energy density of ~10^-4Comment: 4 pages; PRL submitte
- …
