1,372 research outputs found
Open-closed duality and Double Scaling
Nonperturbative terms in the free energy of Chern-Simons gauge theory play a
key role in its duality to the closed topological string. We show that these
terms are reproduced by performing a double scaling limit near the point where
the perturbation expansion diverges. This leads to a derivation of closed
string theory from this large-N gauge theory along the lines of noncritical
string theories. We comment on the possible relevance of this observation to
the derivation of superpotentials of asymptotically free gauge theories and its
relation to infrared renormalons.Comment: 10 pages, LaTe
Another weak first order deconfinement transition: three-dimensional SU(5) gauge theory
We examine the finite-temperature deconfinement phase transition of
(2+1)-dimensional SU(5) Yang-Mills theory via non-perturbative lattice
simulations. Unsurprisingly, we find that the transition is of first order,
however it appears to be weak. This fits naturally into the general picture of
"large" gauge groups having a first order deconfinement transition, even when
the center symmetry associated with the transition might suggest otherwise.Comment: 17 pages, 8 figure
Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?
This letter is a critique of Barbero's constrained Hamiltonian formulation of
General Relativity on which current work in Loop Quantum Gravity is based.
While we do not dispute the correctness of Barbero's formulation of general
relativity, we offer some criticisms of an aesthetic nature. We point out that
unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection
does not admit an interpretation as a space-time gauge field. We show that if
one tries to interpret Barbero's real SO(3) connection as a space-time gauge
field, the theory is not diffeomorphism invariant. We conclude that Barbero's
formulation is not a gauge theory of gravity in the sense that Ashtekar's
Hamiltonian formulation is. The advantages of Barbero's real connection
formulation have been bought at the price of giving up the description of
gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments,
accepted for publication in Classical and Quantum Gravit
On Thermodynamical Properties of Some Coset CFT Backgrounds
We investigate the thermodynamical features of two Lorentzian signature
backgrounds that arise in string theory as exact CFTs and possess more than two
disconnected asymptotic regions: the 2-d charged black hole and the
Nappi-Witten cosmological model. We find multiple smooth disconnected Euclidean
versions of the charged black hole background. They are characterized by
different temperatures and electro-chemical potentials. We show that there is
no straightforward analog of the Hartle-Hawking state that would express these
thermodynamical features. We also obtain multiple Euclidean versions of the
Nappi-Witten cosmological model and study their singularity structure. It
suggests to associate a non-isotropic temperature with this background.Comment: 1+39 pages, harvmac, 8 eps figure
Global solutions of a free boundary problem for selfgravitating scalar fields
The weak cosmic censorship hypothesis can be understood as a statement that
there exists a global Cauchy evolution of a selfgravitating system outside an
event horizon. The resulting Cauchy problem has a free null-like inner
boundary. We study a selfgravitating spherically symmetric nonlinear scalar
field. We show the global existence of a spacetime with a null inner boundary
that initially is located outside the Schwarzschild radius or, more generally,
outside an apparent horizon. The global existence of a patch of a spacetime
that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit
'Bring on the dancing horses!': Ambivalence and class obsession within British media reports of the dressage at London 2012
Quantum States of Topologically Massive Electrodynamics and Gravity
The free quantum states of topologically massive electrodynamics and gravity
in 2+1 dimensions, are explicitly found. It is shown that in both theories the
states are described by infrared-regular polarization tensors containing a
regularization phase which depends on the spin. This is done by explicitly
realizing the quantum algebra on a functional Hilbert space and by finding the
Wightman function to define the scalar product on such a Hilbert space. The
physical properties of the states are analyzed defining creation and
annihilation operators.
For both theories, a canonical and covariant quantization procedure is
developed. The higher order derivatives in the gravitational lagrangian are
treated by means of a preliminary Dirac procedure.
The closure of the Poincar\'e algebra is guaranteed by the
infrared-finiteness of the states which is related to the spin of the
excitations through the regularization phase. Such a phase may have interesting
physical consequences.Comment: 21 page, latex, no figure
Localization in Strongly Chaotic Systems
We show that, in the semiclassical limit and whenever the elements of the
Hamiltonian matrix are random enough, the eigenvectors of strongly chaotic
time-independent systems in ordered bases can on average be exponentially
localized across the energy shell and decay faster than exponentially outside
the energy shell. Typically however, matrix elements are strongly correlated
leading to deviations from such behavior.Comment: RevTeX, 5 pages + 3 postscript figures, submitted to Phys. Rev. Let
On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild
Certain time-like singularities are shown to be resolved already in classical
General Relativity once one passes from particle probes to scalar waves. The
time evolution can be defined uniquely and some general conditions for that are
formulated. The Reissner-Nordstrom singularity allows for communication through
the singularity and can be termed "beam splitter" since the transmission
probability of a suitably prepared high energy wave packet is 25%. The high
frequency dependence of the cross section is w^{-4/3}. However, smooth
geometries arbitrarily close to the singular one require a finite amount of
negative energy matter. The negative-mass Schwarzschild has a qualitatively
different resolution interpreted to be fully reflecting. These 4d results are
similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important
note adde
- …
