135 research outputs found

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Planck intermediate results I : Further validation of new Planck clusters with XMM-Newton

    Get PDF
    Peer reviewe

    Time domain deBroglie wave interferometry along a magnetic guide

    Full text link
    Time domain deBroglie wave interferometry [Cahn et al, Phys. Rev. Lett. 79, 784] is applied to Rb87 atoms in a magnetic guide. A standing wave light field is carefully aligned along the guiding direction of the magnetic trapping potential from a soft-ferromagnetic 4-foil structure. A sequence of two standing wave pulses is applied to the magnetically trapped atoms. The backscattered light at the atomic density grating revival time is collected and detected via a heterodyning technique. In addition to the observed recoil oscillations that fit the interferometer theory for atoms in free space, we observe a decay of the interferometer contrast on a millisecond time scale with unexpected millisecond-scale oscillations. We find that the oscillating decay is explained by a residual variation of the linear trapping potential along the standing wave direction.Comment: 22 pages, 7 figure

    ATLAS sensitivity to top quark and W boson polarization in ttˉt\bar{t} events

    Full text link
    Stringent tests on top quark production and decay mechanisms are provided by the measurement of the top quark and W boson polarization. This paper presents a detailed study of these two measurements with the ATLAS detector, in the semileptonic (ttbar -> W W b bbar -> l nu j1 j2 b bbar) and dileptonic (ttbar -> W W b bbar -> l nu l nu b bbar) ttbar channels. It is based on leading-order Monte Carlo generators and on a fast simulation of the detector. A particular attention is paid to the systematic uncertainties, which dominate the statistical errors after one LHC year at low luminosity (10 fb^{-1}), and to the background estimate. Combining results from both channel studies, the longitudinal component of the W polarization (F\_0) can be measured with a 2% accuracy and the right-handed component (F\_R) with a 1% precision with 10 fb^{-1}. Even though the top quarks in ttbar pairs are not polarized, a large asymmetry is expected within the Standard Model in the like-spin versus unlike-spin pair production. A 4% precision on this asymmetry measurement is possible with 10 fb^{-1}, after combining results from both channel studies. These promising results are converted in a sensitivity to new physics, such as tWb anomalous couplings, top decay to charged Higgs boson, or new s-channels (heavy resonance, gravitons) in ttbar production.Comment: 41+2 pages, 20 figures, ATLAS scientific note SN-ATLAS-2005-05
    corecore