22,156 research outputs found
Classification of scale-free networks
While the emergence of a power law degree distribution in complex networks is
intriguing, the degree exponent is not universal. Here we show that the
betweenness centrality displays a power-law distribution with an exponent \eta
which is robust and use it to classify the scale-free networks. We have
observed two universality classes with \eta \approx 2.2(1) and 2.0,
respectively. Real world networks for the former are the protein interaction
networks, the metabolic networks for eukaryotes and bacteria, and the
co-authorship network, and those for the latter one are the Internet, the
world-wide web, and the metabolic networks for archaea. Distinct features of
the mass-distance relation, generic topology of geodesics and resilience under
attack of the two classes are identified. Various model networks also belong to
either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl
The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys
We perform forecasts for how baryon acoustic oscillation (BAO) scale and
redshift-space distortion (RSD) measurements from future spectroscopic emission
line galaxy (ELG) surveys such as Euclid are degraded in the presence of
spectral line misidentification. Using analytic calculations verified with mock
galaxy catalogs from log-normal simulations we find that constraints are
degraded in two ways, even when the interloper power spectrum is modeled
correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio
for the power spectrum of the target galaxies, which propagates to all
cosmological constraints and increases with contamination fraction, .
Secondly, degeneracies can open up between and cosmological parameters.
In our calculations this typically increases BAO scale uncertainties at the
10-20% level when marginalizing over parameters determining the broadband power
spectrum shape. External constraints on , or parameters determining the
shape of the power spectrum, for example from cosmic microwave background (CMB)
measurements, can remove this effect. There is a near-perfect degeneracy
between and the power spectrum amplitude for low values, where
is not well determined from the contaminated sample alone. This has the
potential to strongly degrade RSD constraints. The degeneracy can be broken
with an external constraint on , for example from cross-correlation with a
separate galaxy sample containing the misidentified line, or deeper
sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra
paragraph added at the end of Section 4.3, minor text edits
Probing Cosmic Strings with Satellite CMB measurements
We study the problem of searching for cosmic string signal patterns in the
present high resolution and high sensitivity observations of the Cosmic
Microwave Background (CMB). This article discusses a technique capable of
recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy
maps, and shows that the biggest factor that produces confusion is represented
by the acoustic oscillation features of the scale comparable to the size of
horizon at recombination. Simulations show that the distribution of null
signals for pure Gaussian maps converges to a distribution, with
detectability threshold corresponding to a string induced step signal with an
amplitude of about 100 \muK which corresponds to a limit of roughly . We study the statistics of spurious detections caused by
extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds,
which represents the dominant source of contamination, we derive sky masks
outlining the available region of the sky where the Galactic confusion is
sub-dominant, specializing our analysis to the case represented by the
frequency coverage and nominal sensitivity and resolution of the Planck
experiment.Comment: 14 pages, 3 figures, to be published in JCA
Holomorphic selection rules, the origin of the mu term, and thermal inflation
When an abelian gauge theory with integer charges is spontaneously broken by
the expectation value of a charge Q field, there remains a Z_Q discrete
symmetry. In a supersymmetric theory, holomorphy adds additional constraints on
the operators that can appear in the effective superpotential. As a result,
operators with the same mass dimension but opposite sign charges can have very
different coupling strengths. In the present work we characterize the operator
hierarchies in the effective theory due to holomorphy, and show that there
exist simple relationships between the size of an operator and its mass
dimension and charge. Using such holomorphy-induced operator hierarchies, we
construct a simple model with a naturally small supersymmetric mu term. This
model also provides a concrete realization of late-time thermal inflation,
which has the ability to solve the gravitino and moduli problems of weak-scale
supersymmetry.Comment: 18 pages, 1 figur
Two Circular-Rotational Eigenmodes in Vortex Gyrotropic Motions in Soft Magnetic Nanodots
We found, by micromagnetic numerical and analytical calculations, that the
clockwise (CW) and counterclockwise (CCW) circular-rotational motions of a
magnetic vortex core in a soft magnetic circular nanodot are the elementary
eigenmodes existing in the gyrotropic motion with respect to the corresponding
CW and CCW circular-rotational-field eigenbasis. Any steady-state vortex
gyrotropic motions driven by a linearly polarized oscillating in-plane magnetic
field in the linear regime can be perfectly understood according to the
superposition of the two circular eigenmodes, which show asymmetric resonance
characteristics reflecting the vortex polarization. The relative magnitudes in
the amplitude and phase between the CCW and CW eigenmodes determine the
elongation and orientation of the orbital trajectories of the vortex core
motions, respectively, which trajectories vary with the polarization and
chirality of the given vortex as well as the field frequency across the
resonance frequency.Comment: 30 pages, 7 figure
Map equation for link community
Community structure exists in many real-world networks and has been reported
being related to several functional properties of the networks. The
conventional approach was partitioning nodes into communities, while some
recent studies start partitioning links instead of nodes to find overlapping
communities of nodes efficiently. We extended the map equation method, which
was originally developed for node communities, to find link communities in
networks. This method is tested on various kinds of networks and compared with
the metadata of the networks, and the results show that our method can identify
the overlapping role of nodes effectively. The advantage of this method is that
the node community scheme and link community scheme can be compared
quantitatively by measuring the unknown information left in the networks
besides the community structure. It can be used to decide quantitatively
whether or not the link community scheme should be used instead of the node
community scheme. Furthermore, this method can be easily extended to the
directed and weighted networks since it is based on the random walk.Comment: 9 pages,5 figure
Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory
We express the Crow-Kimura and Eigen models of quasispecies theory in a
functional integral representation. We formulate the spin coherent state
functional integrals using the Schwinger Boson method. In this formulation, we
are able to deduce the long-time behavior of these models for arbitrary
replication and degradation functions.
We discuss the phase transitions that occur in these models as a function of
mutation rate. We derive for these models the leading order corrections to the
infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy
Monogamy and polygamy for multi-qubit entanglement using R\'enyi entropy
Using R\'enyi- entropy to quantify bipartite entanglement, we prove
monogamy of entanglement in multi-qubit systems for . We also
conjecture a polygamy inequality of multi-qubit entanglement with strong
numerical evidence for with
.Comment: 19 pages, 2 figure
Preheating and Affleck-Dine leptogenesis after thermal inflation
Previously, we proposed a model of low energy Affleck-Dine leptogenesis in
the context of thermal inflation. The lepton asymmetry is generated at the end
of thermal inflation, which occurs at a relatively low energy scale with the
Hubble parameter somewhere in the range 1 \keV \lesssim H \lesssim 1 \MeV.
Thus Hubble damping will be ineffective in bringing the Affleck-Dine field into
the lepton conserving region near the origin, leaving the possibility that the
lepton number could be washed out. Previously, we suggested that preheating
could damp the amplitude of the Affleck-Dine field allowing conservation of the
lepton number. In this paper, we demonstrate numerically that preheating does
efficiently damp the amplitude of the Affleck-Dine field and that the lepton
number is conserved as the result. In addition to demonstrating a crucial
aspect of our model, it also opens the more general possibility of low energy
Affleck-Dine baryogenesis.Comment: 38 pages, 17 figure
- …
