47,493 research outputs found
The Fermi Gamma-ray Burst Monitor: Results from the first two years
In the first two years since the launch of the Fermi Observatory, the
Gamma-ray Burst Monitor (GBM) has detected over 500 Gamma-Ray Bursts (GRBs), of
which 18 were confidently detected by the Large Area Telescope (LAT) above 100
MeV. Besides GRBs, GBM has triggered on other transient sources, such as Soft
Gamma Repeaters (SGRs), Terrestrial Gamma-ray Flashes (TGFs) and solar flares.
Here we present the science highlights of the GBM observations.Comment: 4 pages, 1 figure, Proceedings of the 8th Workshop on Science with
the New Generation of High Energy Gamma-ray Experiments (SciNeGHE 2010),
Nuovo Cimento C, in pres
Modelling the effect of vertical mixing on bottle incubations for determining in situ phytoplankton dynamics. I. Growth rates
Reliable estimates of in situ phytoplankton growth rates are central to understanding the dynamics of aquatic ecosystems. A common approach for estimating in situ growth rates is to incubate natural phytoplankton assemblages in clear bottles at fixed depths or irradiance levels and measure the change in chlorophyll a (Chl) over the incubation period (typically 24 h). Using a modelling approach, we investigate the accuracy of these Chl-based methods focussing on 2 aspects: (1) in a freely mixing surface layer, the cells are typically not in balanced growth, and with photoacclimation, changes in Chl may yield different growth rates than changes in carbon; and (2) the in vitro methods neglect any vertical movement due to turbulence and its effect on the cells' light history. The growth rates thus strongly depend on the incubation depth and are not necessarily representative of the depth-integrated in situ growth rate in the freely mixing surface layer. We employ an individual based turbulence and photosynthesis model, which also accounts for photoacclimation and photo - inhibition, to show that the in vitro Chl-based growth rate can differ both from its carbon-based in vitro equivalent and from the in situ value by up to 100%, depending on turbulence intensity, optical depth of the mixing layer, and incubation depth within the layer. We make recommendations for choosing the best depth for single-depth incubations. Furthermore we demonstrate that, if incubation bottles are being oscillated up and down through the water column, these systematic errors can be significantly reduced. In the present study, we focus on Chl-based methods only, while productivity measurements using carbon-based techniques (e.g. 14C) are discussed in Ross et al. (2011; Mar Ecol Prog Ser 435:33-45). © Inter-Research 2011
Simulating counting oracles with cooperation
We prove that monodirectional shallow chargeless P systems with active
membranes and minimal cooperation working in polynomial time precisely characterise
P#P
k , the complexity class of problems solved in polynomial time by deterministic
Turing machines with a polynomial number of parallel queries to an oracle for a counting
problem
Engaging Citizens with Televised Election Debates through Online Interactive Replays
In this paper we tackle the crisis of political trust and public engagement with politics by investigating new methods and tools to watch and take part in televised political debates. The paper presents relevant research at the intersection of citizenship, technologies and government/democracy, and describes the motivation, requirements and design of Democratic Replay, an online interactive video replay platform that offers a persistent, customisable digital space for: (a) members of the public to express their views as they watch online videos of political events; and (b) enabling for a richer collective understanding of what goes on in these complex media events
Recommended from our members
Sensor, Signal, and Imaging Informatics in 2017.
Objective To summarize significant contributions to sensor, signal, and imaging informatics literature published in 2017.Methods PubMed® and Web of Science® were searched to identify the scientific publications published in 2017 that addressed sensors, signals, and imaging in medical informatics. Fifteen papers were selected by consensus as candidate best papers. Each candidate article was reviewed by section editors and at least two other external reviewers. The final selection of the four best papers was conducted by the editorial board of the International Medical Informatics Association (IMIA) Yearbook.Results The selected papers of 2017 demonstrate the important scientific advances in management and analysis of sensor, signal, and imaging information.ConclusionThe growth of signal and imaging data and the increasing power of machine learning techniques have engendered new opportunities for research in medical informatics. This synopsis highlights cutting-edge contributions to the science of Sensor, Signal, and Imaging Informatics
Implications of "peak oil" for atmospheric CO2 and climate
Unconstrained CO2 emission from fossil fuel burning has been the dominant
cause of observed anthropogenic global warming. The amounts of "proven" and
potential fossil fuel reserves are uncertain and debated. Regardless of the
true values, society has flexibility in the degree to which it chooses to
exploit these reserves, especially unconventional fossil fuels and those
located in extreme or pristine environments. If conventional oil production
peaks within the next few decades, it may have a large effect on future
atmospheric CO2 and climate change, depending upon subsequent energy choices.
Assuming that proven oil and gas reserves do not greatly exceed estimates of
the Energy Information Administration, and recent trends are toward lower
estimates, we show that it is feasible to keep atmospheric CO2 from exceeding
about 450 ppm by 2100, provided that emissions from coal, unconventional fossil
fuels, and land use are constrained. Coal-fired power plants without
sequestration must be phased out before mid-century to achieve this CO2 limit.
It is also important to "stretch" conventional oil reserves via energy
conservation and efficiency, thus averting strong pressures to extract liquid
fuels from coal or unconventional fossil fuels while clean technologies are
being developed for the era "beyond fossil fuels". We argue that a rising price
on carbon emissions is needed to discourage conversion of the vast fossil
resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.Comment: (22 pages, 7 figures; final version accepted by Global Biogeochemical
Cycles
Association between Outdoor Air Pollution and Childhood Leukemia: A Systematic Review and Dose-Response Meta-Analysis.
BackgroundA causal link between outdoor air pollution and childhood leukemia has been proposed, but some older studies suffer from methodological drawbacks. To the best of our knowledge, no systematic reviews have summarized the most recently published evidence and no analyses have examined the dose-response relation.ObjectiveWe investigated the extent to which outdoor air pollution, especially as resulting from traffic-related contaminants, affects the risk of childhood leukemia.MethodsWe searched all case-control and cohort studies that have investigated the risk of childhood leukemia in relation to exposure either to motorized traffic and related contaminants, based on various traffic-related metrics (number of vehicles in the closest roads, road density, and distance from major roads), or to measured or modeled levels of air contaminants such as benzene, nitrogen dioxide, 1,3-butadiene, and particulate matter. We carried out a meta-analysis of all eligible studies, including nine studies published since the last systematic review and, when possible, we fit a dose-response curve using a restricted cubic spline regression model.ResultsWe found 29 studies eligible to be included in our review. In the dose-response analysis, we found little association between disease risk and traffic indicators near the child's residence for most of the exposure range, with an indication of a possible excess risk only at the highest levels. In contrast, benzene exposure was positively and approximately linearly associated with risk of childhood leukemia, particularly for acute myeloid leukemia, among children under 6 y of age, and when exposure assessment at the time of diagnosis was used. Exposure to nitrogen dioxide showed little association with leukemia risk except at the highest levels.DiscussionOverall, the epidemiologic literature appears to support an association between benzene and childhood leukemia risk, with no indication of any threshold effect. A role for other measured and unmeasured pollutants from motorized traffic is also possible. https://doi.org/10.1289/EHP4381
- …
