1,522 research outputs found
Quasi-long-range ordering in a finite-size 2D Heisenberg model
We analyse the low-temperature behaviour of the Heisenberg model on a
two-dimensional lattice of finite size. Presence of a residual magnetisation in
a finite-size system enables us to use the spin wave approximation, which is
known to give reliable results for the XY model at low temperatures T. For the
system considered, we find that the spin-spin correlation function decays as
1/r^eta(T) for large separations r bringing about presence of a
quasi-long-range ordering. We give analytic estimates for the exponent eta(T)
in different regimes and support our findings by Monte Carlo simulations of the
model on lattices of different sizes at different temperatures.Comment: 9 pages, 3 postscript figs, style files include
The Tevatron at the Frontier of Dark Matter Direct Detection
Direct detection of dark matter (DM) requires an interaction of dark matter
particles with nucleons. The same interaction can lead to dark matter pair
production at a hadron collider, and with the addition of initial state
radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron
can thus place limits on DM direct detection rates. We study these bounds both
in the case where there is a contact interaction between DM and the standard
model and where there is a mediator kinematically accessible at the Tevatron.
We find that in many cases the Tevatron provides the current best limit,
particularly for light dark matter, below 5 GeV, and for spin dependent
interactions. Non-standard dark matter candidates are also constrained. The
introduction of a light mediator significantly weakens the collider bound. A
direct detection discovery that is in apparent conflict with mono-jet limits
will thus point to a new light state coupling the standard model to the dark
sector. Mono-jet searches with more luminosity and including the spectrum shape
in the analysis can improve the constraints on DM-nucleon scattering cross
section.Comment: 20 pages, 8 figures, final version in JHE
Relevance of soft modes for order parameter fluctuations in the Two-Dimensional XY model
We analyse the spin wave approximation for the 2D-XY model, directly in
reciprocal space. In this limit the model is diagonal and the normal modes are
statistically independent. Despite this simplicity non-trivial critical
properties are observed and exploited. We confirm that the observed asymmetry
for the probability density function for order parameter fluctuations comes
from the divergence of the mode amplitudes across the Brillouin zone. We show
that the asymmetry is a many body effect despite the importance played by the
zone centre. The precise form of the function is dependent on the details of
the Gibbs measure, giving weight to the idea that an effective Gibbs measure
should exist in non-equilibrium systems, if a similar distribution is observed.Comment: 12 pages, 9 figure
Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors
While visual comparison of directed acyclic graphs (DAGs) is commonly
encountered in various disciplines (e.g., finance, biology), knowledge about
humans' perception of graph similarity is currently quite limited. By graph
similarity perception we mean how humans perceive commonalities and differences
in graphs and herewith come to a similarity judgment. As a step toward filling
this gap the study reported in this paper strives to identify factors which
influence the similarity perception of DAGs. In particular, we conducted a
card-sorting study employing a qualitative and quantitative analysis approach
to identify 1) groups of DAGs that are perceived as similar by the participants
and 2) the reasons behind their choice of groups. Our results suggest that
similarity is mainly influenced by the number of levels, the number of nodes on
a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception,
Similarity, Comparison, Visualizatio
Width Distributions and the Upper Critical Dimension of KPZ Interfaces
Simulations of restricted solid-on-solid growth models are used to build the
width-distributions of d=2-5 dimensional KPZ interfaces. We find that the
universal scaling function associated with the steady-state width-distribution
changes smoothly as d is increased, thus strongly suggesting that d=4 is not an
upper critical dimension for the KPZ equation. The dimensional trends observed
in the scaling functions indicate that the upper critical dimension is at
infinity.Comment: 4 pages, 4 postscript figures, RevTe
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass GeV and a constant splitting between
successive states keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to GeV and keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO
The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP
interactions on F using the superheated droplet technique. A new
generation of detectors and new features which enable background discrimination
via the rejection of non-particle induced events are described. First results
are presented for a subset of two detectors with target masses of F of
65 g and 69 g respectively and a total exposure of 13.75 0.48 kgd. No
dark matter signal was found and for WIMP masses around 24 GeV/c new limits
have been obtained on the spin-dependent cross section on F of
= 13.9 pb (90% C.L.) which can be converted into cross section
limits on protons and neutrons of = 0.16 pb and = 2.60 pb
respectively (90% C.L). The obtained limits on protons restrict recent
interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent
interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages,
7 figure
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
- …
