21,002 research outputs found
Learning and Communication in Sender-Receiver Games: An Econometric Investigation
Learning and communication play important roles in coordinating activities. Game theory and experiments have made a significant contribution to our understanding and appreciation for the issues surrounding learning and communication in coordination. However, the results of past experimental studies provide conflicting results about the performance of learning models. Moreover, the interaction between learning and communication has not been systematically investigated. Our long run objective is to overcome the conflicting results and to provide a better understanding of the interaction. To this end, we econometrically investigate a sender-receiver game environment where communication is necessary for coordination and learning is essential for communication.
Boundary layer bleed system study for a full-scale, mixed-compression inlet with 45 percent internal contraction
The results of an experimental bleed development study for a full-scale, Mach 2.5, axisymmetric, mixed-compression inlet were presented. The inlet was designed to satisfy the airflow requirements of the TF30-P-3 turbofan engine. Capabilities for porous bleed on the cowl surface and ram-scoop/flush-slot bleed on the centerbody were provided. A configuration with no bleed on the cowl achieved a minimum stable, diffuser exit, total pressure recovery of 0.894 with a centerbody-bleed mass flow ratio of 0.02. Configurations with cowl bleed had minimum stable recoveries as high as 0.900 but suffered range decrement penalties from the increased bleed mass flow removal. Limited inlet stability and unstart angle-of-attack data are presented
Experimental and analytical study of a conically diffused flow with a nearly separated boundary layer
Turbulence measurements were obtained in the nearly separated flow in a 13 deg total angle of divergence conical diffuser coupled to a constant area tailpipe. Air at 207 newtons per square centimeter and 308 K provided an inlet velocity of about 51 meters per second at an inlet unit Reynolds number of 63.7 million per meter. Very high longitudinal turbulence intensities accompanied the diffusion process with peak values approaching 40 percent when normalized by the local centerline velocity. Predictions of the pressure recovery coefficient using a mixing length concept were good in the early stages of diffusion. In the latter stages of diffusion satisfactory predictions of the pressure recovery were obtained with an empirical method
On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site
We consistently formalize the probabilistic description of multipartite joint
measurements performed on systems of any nature. This allows us: (1) to specify
in probabilistic terms the difference between nonsignaling, the Einstein-
Podolsky-Rosen (EPR) locality and Bell's locality; (2) to introduce the notion
of an LHV model for an S_{1}x...xS_{N}-setting N-partite correlation
experiment, with outcomes of any spectral type, discrete or continuous, and to
prove both general and specific "quantum" statements on an LHV simulation in an
arbitrary multipartite case; (3) to classify LHV models for a multipartite
quantum state, in particular, to show that any N-partite quantum state, pure or
mixed, admits an Sx1x...x1 -setting LHV description; (4) to evaluate a
threshold visibility for a noisy bipartite quantum state to admit an S_{1}xS_
{2}-setting LHV description under any generalized quantum measurements of two
parties. In a sequel to this paper, we shall introduce a single general
representation incorporating in a unique manner all Bell-type inequalities for
either joint probabilities or correlation functions that have been introduced
or will be introduced in the literature.Comment: 26 pages; added section Conclusions and some references for section
Acoustic and aerodynamic performance of a 6-foot-diameter fan for turbofan engines. 1 - Design of facility and QF-1 fan
Design of test facility and prototype fan for turbofan acoustic researc
An analytical and experimental study of a short s-shaped subsonic diffuser of a supersonic inlet
A subscale HiMAT forebody and inlet was investigated over a range of Mach numbers to 1.4. The inlet exhibited a transitory separation within the diffuser but steady state data indicated reattachment at the diffuser exit. A finite difference procedure for turbulent compressible flow in axisymmetric ducts was used to successfully model the HiMAT duct flow. The analysis technique was further used to estimate the initiation of separation and delineate the steady and unsteady flow regimes in similar S-shaped ducts
A Theory of Errors in Quantum Measurement
It is common to model random errors in a classical measurement by the normal
(Gaussian) distribution, because of the central limit theorem. In the quantum
theory, the analogous hypothesis is that the matrix elements of the error in an
observable are distributed normally. We obtain the probability distribution
this implies for the outcome of a measurement, exactly for the case of 2x2
matrices and in the steepest descent approximation in general. Due to the
phenomenon of `level repulsion', the probability distributions obtained are
quite different from the Gaussian.Comment: Based on talk at "Spacetime and Fundamental Interactions: Quantum
Aspects" A conference to honor A. P. Balachandran's 65th Birthda
Minimizing boundary layer bleed for a mixed compression inlet
An experimental investigation of a full scale mixed compression inlet sized for the TF30-P-3 turbofan engine was conducted at Mach 2.5 and 2.0 operating conditions. The two cone axisymmetric inlet had minimum internal contraction consistent with high total pressure recovery and low cowl drag. At Mach 2.5, inlet recovery exceeded 0.90 with only 0.02 centerbody bleed mass-flow ratio and zero cowl bleed. A centerbody bleed of approximately 0.05 gave a maximum inlet unstart angle-of-attack of 6.85 deg. Inlet performance and angle-of-attack tolerance is presented for operation at Mach 2.5 and 2.0
Distortion in a full-scale bicone inlet with internal focused compression and 45 percent internal contraction
The distortion characteristics were investigated at the subsonic diffuser exit of a full-scale, Mach 2.5, axisymmetric, mixed compression inlet. Performance and steady-state distortion characteristics were obtained at zero and maximum angle of attack and during an inlet unstart-restart sequence. For the configuration with no cowl bleed, steady-state distortion P(max)P(min)P(bar) ranged from 0.10 for critical inlet operation at 0 deg angle-of-attack to 0.306 for supercritical inlet operation at 6.84 deg angle-of-attack. Vortex generators provided a 50 percent reduction in steady-state distortion for critical operation. Bleed has a smaller effect on steady-stated distortion
- …
