33,873 research outputs found
Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system
Evolution of the mass function (MF) and radial distribution (RD) of the
Galactic globular cluster (GC) system is calculated using an advanced and a
realistic Fokker-Planck (FP) model that considers dynamical friction,
disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP
calculations with different initial cluster conditions, and then search a
wide-parameter space for the best-fitting initial GC MF and RD that evolves
into the observed present-day Galactic GC MF and RD. By allowing both MF and RD
of the initial GC system to vary, which is attempted for the first time in the
present Letter, we find that our best-fitting models have a higher peak mass
for a lognormal initial MF and a higher cut-off mass for a power-law initial MF
than previous estimates, but our initial total masses in GCs, M_{T,i} =
1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings
include that our best-fitting lognormal MF shifts downward by 0.35 dex during
the period of 13 Gyr, and that our power-law initial MF models well-fit the
observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We
also find that our results are insensitive to the initial distribution of orbit
eccentricity and inclination, but are rather sensitive to the initial
concentration of the clusters and to how the initial tidal radius is defined.
If the clusters are assumed to be formed at the apocentre while filling the
tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to
~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
Hawking Radiation of Black p-Branes from Gravitational Anomaly
We investigate the Hawking radiation of black -branes of superstring
theories using the method of anomaly cancelation, specially, we use the method
of [S. Iso, H. Umetsu and F. Wilczek, {\sl Phys. Rev. Lett.} {\bf 96}, 151302
(2006); {\sl Phys. Rev. D} {\bf 74}, 044017 (2006)]. The metrics of black
-branes are spherically symmetric, but not the Schwarzschild type. In order
to simplify the calculation, we first make a coordinate transformation to
transform the metric to the Schwarzschild type. Then we calculate its
energy-momentum flux from the method of anomaly cancelation of the above
mentioned references. The obtained energy-momentum flux is equal to a black
body radiation, the thermodynamic temperature of the radiation is equal to its
Hawking temperature. And we find that the results are not changed for the
original non-Schwarzschild type spherically symmetric metric.Comment: 19 pages Latex, some mistakes correcte
Do Naked Singularities Form?
A naked singularity is formed by the collapse of a Sine-Gordon soliton in 1+1
dimensional dilaton gravity with a negative cosmological constant. We examine
the quantum stress tensor resulting from the formation of the singularity.
Consistent boundary conditions require that the incoming soliton is accompanied
by a flux of incoming radiation across past null infinity, but neglecting the
back reaction of the spacetime leads to the absurd conclusion that the total
energy entering the system by the time the observer is able to receive
information from the singularity is infinite. We conclude that the back
reaction must prevent the formation of the naked singularity.Comment: 7 pages (21 Kb), PHYZZX. Revised version to appear in Class. & Quant.
Grav. Letts. A discussion of the consistency of the Sine-Gordon model is
include
Walls in supersymmetric massive nonlinear sigma model on complex quadric surface
The Bogomol'nyi-Prasad-Sommerfield (BPS) multiwall solutions are constructed
in a massive Kahler nonlinear sigma model on the complex quadric surface,
Q^N=SO(N+2)/[SO(N)\times SO(2)] in 3-dimensional space-time. The theory has a
non-trivial scalar potential generated by the Scherk-Schwarz dimensional
reduction from the massless nonlinear sigma model on Q^N in 4-dimensional
space-time and it gives rise to 2[N/2+1] discrete vacua. The BPS wall solutions
connecting these vacua are obtained based on the moduli matrix approach. It is
also shown that the moduli space of the BPS wall solutions is the complex
quadric surface Q^N.Comment: 42 pages, 30 figures, typos corrected, version to appear in PR
Size tunable visible and near-infrared photoluminescence from vertically etched silicon quantum dots
Corrugated etching techniques were used to fabricate size-tunable silicon quantum dots that luminesce under photoexcitation, tunable over the visible and near infrared. By using the fidelity of lithographic patterning and strain limited, self-terminating oxidation, uniform arrays of pillar containing stacked quantum dots as small as 2 nm were patterned. Furthermore, an array of pillars, with multiple similar sized quantum dots on each pillar, was fabricated and tested. The photoluminescence displayed a multiple, closely peaked emission spectra corresponding to quantum dots with a narrow size distribution. Similar structures can provide quantum confinement effects for future nanophotonic and nanoelectronic devices
Magnetic Reynolds number dependence of reconnection rate and flow structure of the self-similar evolution model of fast magnetic reconnection
This paper investigates Magnetic Reynolds number dependence of the
``self-similar evolution model'' (Nitta et al. 2001) of fast magnetic
reconnection. I focused my attention on the flow structure inside and around
the reconnection outflow, which is essential to determine the entire
reconnection system (Nitta et al. 2002). The outflow is consist of several
regions divided by discontinuities, e.g., shocks, and it can be treated by a
shock-tube approximation (Nitta 2004). By solving the junction conditions
(e.g., Rankine-Hugoniot condition), the structure of the reconnection outflow
is obtained. Magnetic reconnection in most astrophysical problems is
characterized by a huge dynamic range of its expansion ( for typical
solar flares) in a free space which is free from any influence of external
circumstances. Such evolution results in a spontaneous self-similar expansion
which is controlled by two intrinsic parameters: the plasma- and the
magnetic Reynolds number. The plasma- dependence had been investigated in
our previous paper. This paper newly clarifies the relation between the
reconnection rate and the inflow structure just outside the Petschek-like slow
shock: As the magnetic Reynolds number increases, strongly converging inflow
toward the Petschek-like slow shock forms, and it significantly reduces the
reconnection rate.Comment: 16 pages. to appear in ApJ (2006 Jan. 20 issue
Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory
In this paper, using a Hopf-algebraic method, we construct deformed
Poincar\'e SUSY algebra in terms of twisted (Hopf) algebra. By adapting this
twist deformed super-Poincar\'e algrebra as our fundamental symmetry, we can
see the consistency between the algebra and non(anti)commutative relation among
(super)coordinates and interpret that symmetry of non(anti)commutative QFT is
in fact twisted one. The key point is validity of our new twist element that
guarantees non(anti)commutativity of space. It is checked in this paper for N=1
case. We also comment on the possibility of noncommutative central charge
coordinate. Finally, because our twist operation does not break the original
algebra, we can claim that (twisted) SUSY is not broken in contrast to the
string inspired SUSY in N=1 non(anti)commutative superspace.Comment: 15 pages, LaTeX. v3:One section added, typos corrected, to appear in
Int. J. Mod. Phys.
- …
