224 research outputs found

    'Leave your ego at the door’: A narrative investigation into effective wingsuit flying

    Get PDF
    In recent years there has been a rapid growth in interest in extreme sports. For the most part research has focused on understanding motivations for participation in extreme sports and very little research has attempted to investigate the psychological structure of effective performance. Those few studies that have attempted to explore this issue have tested models designed for traditional sport on adventure sports. However, extreme sports are not the same as adventure sports or traditional sports. This study employed a narrative approach to investigate experiences of effective performance in the extreme sport of proximity wingsuit flying. An overarching theme we labelled ‘leave your ego at the door’, emerged based on four sub-themes: (1) know thy self, (2) know thy skills, (3) know the environment now, and (4) tame the ‘inner animal’. These themes are presented and discussed in relation to performance and discovery narratives identified within elite sport, thereby shedding light on how participants’ experiences of the extreme sport of proximity wingsuit flying differ from dominant stories within traditional sports

    DIMAS Development of an integrated database for the management of accidental spills. Part 2. Global change, ecosystems and biodiversity - SPSDII: final report

    Get PDF
    DIMAS is a 2-year project executed by three Belgian partners (EURAS, VLIZ and Ghent University) and funded by the SPSD II research program of the Belgian Science Policy (BELSPO). Several shipping accidents in Belgian territorial waters, made the various government agencies involved aware of the need to develop tools to assess the risks and impact on marine resources in the case of an accidental release of hazardous substances. DIMAS aims at the protection of the North Sea and Western Scheldt in case of accidental spills from ships. In the present project, a relational database is developed, providing reliable, easy to interpret and up-to-date information on marine specific issues. The database contains the latest information on effects (acute and chronic), absorption, distribution, bioaccumulation/biomagnification, GESAMP hazard profiles and physico-chemical properties for a selection of priority substances and is publicly available (www.vliz.be/projects/dimas). The selection of the substances is based on criteria such as occurrence on priority lists, volumes transported over sea, frequency of involvement in accidental spills and frequency of transports over sea. The first beneficiaries of this database are the people directly involved in the first phase of a containment plan for an accidental spill. The final indirect beneficiaries are the general public (scientists, journalists, general public, etc.) who will be better informed about the potential impact to man and the environment

    Acetonitrile in the atmosphere

    Get PDF

    Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

    Get PDF
    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission's main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet's activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (m/Δ m > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion source

    WACCM-D Whole Atmosphere Community Climate Model with D-region ion chemistry

    Get PDF
    Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during strong events can decrease ozone by tens of percent. However, the standard ion chemistry parameterization used in atmospheric models neglects the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. We consider realistic ionization scenarios and compare the WACCM-D results to those from the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry. We show that WACCM-D produces well the main characteristics of the D-region ionosphere, as well as the overall proportion of important ion groups, in agreement with SIC. Comparison of ion concentrations shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70–90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some groups but is still within tens of percent. Based on the good agreement overall and the fact that part of the differences are caused by different model setups, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and is therefore expected to improve EPP modeling considerably. These improvements are demonstrated in a companion paper by Andersson et al
    corecore