6,424 research outputs found
Implications of the second enlargement for the Mediterranean and "ACP" policies of the European Community. Europe Information: Development, October 1980. X/235/80
Large-Q^2 behavior of the pion electromagnetic form factor
We study the large-Q^2 behavior of the electromagnetic form factor of the pion, which is viewed as a quark-antiquark bound state in a (nongauge) quantum field theory. When the pion's Bethe-Salpeter wave function is expanded in O(4) partial waves, it is found that the information needed about the partial-wave amplitudes is their scaling behavior at large momentum and the locations of their poles in the complex J plane. This information is determined by using the operator-product expansion, conformal invariance at short distances, and a regularity property that holds at least in the ladder model. The resulting behavior of the form factor is roughly F(Q^2)~(Q^2)^(-1), with corrections due to anomalous dimensions
The American Religious Landscape and the 2004 Presidential Vote: Increased Polarization
Presents findings from a post-election survey conducted in November and December 2004. Explores the polarization between different religions, as well as within the major religious traditions
Light-cone behavior of the pion Bethe-Salpeter wave function in the ladder model
The Bethe-Salpeter wave function χ(q^ν+P^ν, q^ν) for two spin-½ quarks bound by the exchange of a scalar meson is examined in the ladder model. We seek the behavior of χ as the squared momentum, (q+P)^2, on one leg becomes infinite while the squared momentum, q^2, on the other leg remains fixed. This behavior is investigated by making a Wick rotation, expanding χ in partial-wave amplitudes χ^i_J(q^2) of the group O(4), and then looking for the rightmost poles of χ^i_J(q^2) in the complex J plane. Our results verify (in the ladder model) the useful hypothesis that the locations of these poles are independent of q^2 and can thus be computed in the q^2→∞ limit by using conformal invariance
Extra force and extra mass from noncompact Kaluza-Klein theory in a cosmological model
Using the Hamilton-Jacobi formalism, we study extra force and extra mass in a
recently introduced noncompact Kaluza-Klein cosmological model. We examine the
inertial 4D mass of the inflaton field on a 4D FRW bulk in two examples.
We find that has a geometrical origin and antigravitational effects on a
non inertial 4D bulk should be a consequence of the motion of the fifth
coordinate with respect to the 4D bulk.Comment: final version to be published in EPJ
Cosmological Surrealism: More than ``Eternal Reality" is Needed
Inflationary Cosmology makes the universe ``eternal" and provides for
recurrent universe creation, ad infinitum -- making it also plausible to assume
that ``our" Big Bang was also preceeded by others, etc.. However, GR tells us
that in the ``parent" universe's reference frame, the newborn universe's
expansion will never start. Our picture of ``reality" in spacetime has to be
enlarged.Comment: 7 pages, TAUP N23
Origin of FRW cosmology in slow-roll inflation from noncompact Kaluza-Klein theory
Using a recently introduced formalism we discuss slow-roll inflaton from
Kaluza-Klein theory without the cylinder condition. In particular, some
examples corresponding to polynomic and hyperbolic -potentials are
studied. We find that the evolution of the fifth coordinate should be
determinant for both, the evolution of the early inflationary universe and the
quantum fluctuations.Comment: (final version) to be published in EPJ
Inflation without Slow Roll
We draw attention to the possibility that inflation (i.e. accelerated
expansion) might continue after the end of slow roll, during a period of fast
oscillations of the inflaton field \phi . This phenomenon takes place when a
mild non-convexity inequality is satisfied by the potential V(\phi). The
presence of such a period of \phi-oscillation-driven inflation can
substantially modify reheating scenarios.
In some models the effect of these fast oscillations might be imprinted on
the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references
adde
Particle production and classical condensates in de Sitter space
The cosmological particle production in a expanding de Sitter universe
with a Hubble parameter is considered for various values of mass or
conformal coupling of a free, scalar field. One finds that, for a minimally
coupled field with mass (except for ),
the one-mode occupation number grows to unity soon after the physical
wavelength of the mode becomes larger than the Hubble radius, and afterwards
diverges as , where . However, for a field with ,
the occupation number of a mode outside the Hubble radius is rapidly
oscillating and bounded and does not exceed unity. These results, readily
generalized for cases of a nonminimal coupling, provide a clear argument that
the long-wavelength vacuum fluctuations of low-mass fields in an inflationary
universe do show classical behavior, while those of heavy fields do not. The
interaction or self-interaction does not appear necessary for the emergence of
classical features, which are entirely due to the rapid expansion of the de
Sitter background and the upside-down nature of quantum oscillators for modes
outside the Hubble radius.Comment: Revtex + 5 postscript figures. Accepted for Phys Rev D15. Revision of
Aug 1996 preprint limited to the inclusion and discussion of references
suggested by the referee
- …
