6 research outputs found
MAPPING AREAS IMPACTED BY VOLCANIC FLOWS DURING AN ERUPTION USING SYNTHETIC APERTURE RADAR AND OPTICAL IMAGERY
During volcanic disasters, the remoteness of the terrains combined with potentially incapacitated lifelines (e.g., disturbed transportation network) prevent ground-based surveys for timely assessment of damage extents. To that effect, we worked to combine satellite optical and Synthetic Aperture Radar (SAR) data to rapidly delineate the areas impacted by fast-moving volcanic flows during an eruption (e.g., Pyroclastic Density Currents (PDCs), lahars), which can in turn be used to target and organize the response efforts. We used the 2015 eruptions of Volcán de Colima (Mexico) and Volcán Calbuco (Chile) volcanoes to calibrate detection thresholds of different types of volcanic flows, from optical and SAR imagery. Optical imagery is used to calculate temporal changes of Normalized Difference Vegetation Index (NDVI) associated with the presence of erupted materials on the surface. SAR amplitude images are used to detect changes in surface roughness (sigma0) attributed to the emplacement of new volcanic flows. Classification of the respective NDVI and SAR amplitude signal changes for different types of volcanic flows is done using very-high-resolution imagery and ground-based data obtained during field work. Linear rescaling of minimal and maximal threshold signals is used to create probability maps of volcanic flow deposits extent, and then combined into a joint probability map to maximize the accuracy of the deposit extents. We tested our ability to generate volcanic flow extent maps during the April 2021 eruption of Soufrière St Vincent, using this detection method and the calibrated threshold values for PDCs and lahars.https://isprs-archives.copernicus.org/articles/XLVIII-M-1-2023/175/2023
Public Health Data Applications Using the CDC Tracking Network: Augmenting Environmental Hazard Information With Lower‐Latency NASA Data
Abstract Exposure to environmental hazards is an important determinant of health, and the frequency and severity of exposures is expected to be impacted by climate change. Through a partnership with the U.S. National Aeronautics and Space Administration, the U.S. Centers for Disease Control and Prevention's National Environmental Public Health Tracking Network is integrating timely observations and model data of priority environmental hazards into its publicly accessible Data Explorer (https://ephtracking.cdc.gov/DataExplorer/). Newly integrated data sets over the contiguous U.S. (CONUS) include: daily 5‐day forecasts of air quality based on the Goddard Earth Observing System Composition Forecast, daily historical (1980‐present) concentrations of speciated PM2.5 based on the modern era retrospective analysis for research and applications, version 2, and Moderate Resolution Imaging Spectroradiometer (MODIS) daily near real‐time maps of flooding (MCDWD). Data integrated into the CDC Tracking Network are broadly intended to improve community health through action by informing both research and early warning activities, including (a) describing temporal and spatial trends in disease and potential environmental exposures, (b) identifying populations most affected, (c) generating hypotheses about associations between health and environmental exposures, and (d) developing, guiding, and assessing environmental public health policies and interventions aimed at reducing or eliminating health outcomes associated with environmental factors
