5,031 research outputs found
Statement of Arnold E. Perl Before the Commission on the Future of Worker-Management Relations
Testimony_Perl_081094.pdf: 191 downloads, before Oct. 1, 2020
Corrections to Fermi's Golden Rule in Decays
We analyze the decays utilizing a formulation of
transition rates which explicitly exhibits corrections to Fermi's Golden Rule.
These corrections arise in systems in which the phase space and/or matrix
element varies rapidly with energy, as happens in , which is
just above threshold. We show that the theoretical corrections resolve a
puzzling discrepancy between theory and experiment for the branching
ratio
Multiple-access phased array antenna simulator for a digital beam forming system investigation
Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities
Search for Free Fractional Electric Charge Elementary Particles
We have carried out a direct search in bulk matter for free fractional
electric charge elementary particles using the largest mass single sample ever
studied - about 17.4 mg of silicone oil. The search used an improved and highly
automated Millikan oil drop technique. No evidence for fractional charge
particles was found. The concentration of particles with fractional charge more
than 0.16e (e being the magnitude of the electron charge) from the nearest
integer charge is less than particles per nucleon with 95%
confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR
Charged Scalar Particles and Leptonic Decay
Charged scalar particles introduced in some extensions of the standard model
can induce leptonic decay at tree level. We find that with some charged
SU(2)-singlet scalar particles, like ones introduced in Zee-type models,
leptonic decay width is always smaller than what is predicted by the standard
model, therefore they may offer a natural solution to decay puzzle. To
be more specific, we examine some Zee-type models in detail to see if at the
same time they are acceptable in particle physics, cosmology and astrophysics.
It is shown that decay data do put some constrains on these models.Comment: ICTP Report No. IC/93/31, 12 pages, Latex, one figure is not
included, it is available upon deman
Dilepton Production in Nucleon-Nucleon Reactions With and Without Hadronic Inelasticities
We calculate elementary proton-proton and neutron-proton bremsstrahlung and
their contribution to the invariant mass distribution. At 4.9 GeV, the
proton-proton contribution is larger than neutron-proton, but it is small
compared to recent data. We then make a first calculation of bremsstrahlung in
nucleon-nucleon reactions with multi-hadron final states. Again at 4.9 GeV, the
many-body bremsstrahlung is larger than simple nucleon-nucleon bremsstrahlung
by more than an order of magnitude in the low-mass region. When the
bremsstrahlung contributions are summed with Dalitz decay of the ,
radiative decay of the and from two-pion annihilation, the result
matches recent high statistics proton-proton data from the Dilepton
Spectrometer collaboration.Comment: 1+17 pages plus 11 PostScript figures uuencoded and appended,
McGill/93-9, TPI-MINN-93/18-
The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy.
Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer's disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen's kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen's kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II-III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies
Differential scaling within an insect compound eye
Environmental and genetic influences cause individuals of a species to differ in size. As they do so, organ size and shape are scaled to available resources whilst maintaining function. The scaling of entire organs has been investigated extensively but scaling within organs remains poorly understood. By making use of the structure of the insect compound eye, we show that different regions of an organ can respond differentially to changes in body size. Wood ant (Formica rufa) compound eyes contain facets of different diameters in different regions. When the animal body size changes, lens diameters from different regions can increase or decrease in size either at the same rate (a ‘grade’ shift) or at different rates (a ‘slope’ shift). These options are not mutually exclusive, and we demonstrate that both types of scaling apply to different regions of the same eye. This demonstrates that different regions within a single organ can use different rules to govern their scaling, responding differently to their developmental environment. Thus, the control of scaling is more nuanced than previously appreciated, diverse responses occurring even among homologous cells within a single organ. Such fine control provides a rich substrate for the diversification of organ morphology
Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles
We study the big-bang nucleosynthesis (BBN) with the long-lived exotic
particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay
may cause non-thermal nuclear reactions during or after the BBN, altering the
predictions of the standard BBN scenario. We pay particular attention to its
hadronic decay modes and calculate the primordial abundances of the light
elements. Using the result, we derive constraints on the primordial abundance
of X. Compared to the previous studies, we have improved the following points
in our analysis: The JETSET 7.4 Monte Carlo event generator is used to
calculate the spectrum of hadrons produced by the decay of X; The evolution of
the hadronic shower is studied taking account of the details of the energy-loss
processes of the nuclei in the thermal bath; We have used the most recent
observational constraints on the primordial abundances of the light elements;
In order to estimate the uncertainties, we have performed the Monte Carlo
simulation which includes the experimental errors of the cross sections and
transfered energies. We will see that the non-thermal productions of D, He3,
He4 and Li6 provide stringent upper bounds on the primordial abundance of
late-decaying particle, in particular when the hadronic branching ratio of X is
sizable. We apply our results to the gravitino problem, and obtain upper bound
on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full
length paper of the preprint astro-ph/040249
- …
