929 research outputs found
Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors
We report new experimental studies to understand the physics of phonon
sensors which utilize quasiparticle diffusion in thin aluminum films into
tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic
TES physics and a simple physical model of the overlap region between the W and
Al films in our devices enables us to accurately reproduce the experimentally
observed pulse shapes from x-rays absorbed in the Al films. We further estimate
quasiparticle loss in Al films using a simple diffusion equation approach.Comment: 5 pages, 6 figures, PRA
Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks
Data used for the phylogenetic analysis of Hox and ParaHox genes, including the respective GenBank accession numbers. (DOC 31Â kb
A thermoresponsive and magnetic colloid for 3D cell expansion and reconfiguration
A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postculture by the simple process of lowering the temperature and applying an external magnetic field. The colloidal gel can be reconfigured with thermal and magnetic stimuli to allow patterning of cells in discrete zones and to control movement of cells within the porous matrix during culture
Biodegradable nanomats produced by electrospinning : expanding multifunctionality and potential for tissue engineering
With increasing interest in nanotechnology, development of nanofibers (n-fibers) by using the
technique of electrospinning is gaining new momentum. Among important potential applications of
n-fiber-based structures, scaffolds for tissue-engineering represent an advancing front. Nanoscaffolds
(n-scaffolds) are closer to natural extracellular matrix (ECM) and its nanoscale fibrous structure.
Although the technique of electrospinning is relatively old, various improvements have been
made in the last decades to explore the spinning of submicron fibers from biodegradable polymers
and to develop also multifunctional drug-releasing and bioactive scaffolds. Various factors can
affect the properties of resulting nanostructures that can be classified into three main categories,
namely: (1) Substrate related, (2) Apparatus related, and (3) Environment related factors. Developed
n-scaffolds were tested for their cytocompatibility using different cell models and were seeded
with cells for to develop tissue engineering constructs. Most importantly, studies have looked at the
potential of using n-scaffolds for the development of blood vessels. There is a large area ahead
for further applications and development of the field. For instance, multifunctional scaffolds that
can be used as controlled delivery system do have a potential and have yet to be investigated for
engineering of various tissues. So far, in vivo data on n-scaffolds are scarce, but in future reports
are expected to emerge. With the convergence of the fields of nanotechnology, drug release and
tissue engineering, new solutions could be found for the current limitations of tissue engineering
scaffolds, which may enhance their functionality upon in vivo implantation. In this paper electrospinning
process, factors affecting it, used polymers, developed n-scaffolds and their characterization
are reviewed with focus on application in tissue engineering
Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals
Magnetite (Fe3O4) is one of the most actively studied materials with a famous
metal-insulator transition (MIT), so-called the Verwey transition at around 123
K. Despite the recent progress in synthesis and characterization of Fe3O4
nanocrystals (NCs), it is still an open question how the Verwey transition
changes on a nanometer scale. We herein report the systematic studies on size
dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have
successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes
ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey
transition when they are characterized by conductance, magnetization, cryo-XRD,
and heat capacity measurements. The Verwey transition is weakly size-dependent
and becomes suppressed in NCs smaller than 20 nm before disappearing completely
for less than 6 nm, which is a clear, yet highly interesting indication of a
size effect of this well-known phenomena. Our current work will shed new light
on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted
Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan
We report the result of a blinded search for Weakly Interacting Massive
Particles (WIMPs) using the majority of the SuperCDMS Soudan dataset. With an
exposure of 1690 kg days, a single candidate event is observed, consistent with
expected backgrounds. This analysis (combined with previous Ge results) sets an
upper limit on the spin-independent WIMP--nucleon cross section of () cm at 46 GeV/. These results set the
strongest limits for WIMP--germanium-nucleus interactions for masses 12
GeV/
Evaluation of machine-learning methods for ligand-based virtual screening
Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed
- …
