851 research outputs found
First Record of \u3ci\u3eOchlerotatus Japonicus\u3c/i\u3e (Diptera: Culicidae) in St. Joseph County, Indiana
A single female specimen of Ochlerotatus japonicus (Theobald)(formerly Aedes japonicus), the Asian bush mosquito, was captured in St. Joseph County, IN on 29 July 2004. This is the first report of that species in northern Indiana. Additional specimens were subsequently collected, indicating probable establishment throughout the county
Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill
The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain
Mutual Event Observations of Io's Sodium Corona
We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere
Hubble Space Telescope Survey of Interstellar ^12CO/^13CO in the Solar Neighborhood
We examine 20 diffuse and translucent Galactic sight lines and extract the
column densities of the ^12CO and ^13CO isotopologues from their ultraviolet
A--X absorption bands detected in archival Space Telescope Imaging Spectrograph
data with lambda/Deltalambda geq 46,000. Five more targets with Goddard
High-Resolution Spectrograph data are added to the sample that more than
doubles the number of sight lines with published Hubble Space Telescope
observations of ^13CO. Most sight lines have 12-to-13 isotopic ratios that are
not significantly different from the local value of 70 for ^12C/^13C, which is
based on mm-wave observations of rotational lines in emission from CO and H_2CO
inside dense molecular clouds, as well as on results from optical measurements
of CH^+. Five of the 25 sight lines are found to be fractionated toward lower
12-to-13 values, while three sight lines in the sample are fractionated toward
higher ratios, signaling the predominance of either isotopic charge exchange or
selective photodissociation, respectively. There are no obvious trends of the
^12CO-to-^13CO ratio with physical conditions such as gas temperature or
density, yet ^12CO/^13CO does vary in a complicated manner with the column
density of either CO isotopologue, owing to varying levels of competition
between isotopic charge exchange and selective photodissociation in the
fractionation of CO. Finally, rotational temperatures of H_2 show that all
sight lines with detected amounts of ^13CO pass through gas that is on average
colder by 20 K than the gas without ^13CO. This colder gas is also sampled by
CN and C_2 molecules, the latter indicating gas kinetic temperatures of only 28
K, enough to facilitate an efficient charge exchange reaction that lowers the
value of ^12CO/^13CO.Comment: 1-column emulateapj, 23 pages, 9 figure
The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks
Aims. Photodissociation by UV light is an important destruction mechanism for
CO in many astrophysical environments, ranging from interstellar clouds to
protoplanetary disks. The aim of this work is to gain a better understanding of
the depth dependence and isotope-selective nature of this process.
Methods. We present a photodissociation model based on recent spectroscopic
data from the literature, which allows us to compute depth-dependent and
isotope-selective photodissociation rates at higher accuracy than in previous
work. The model includes self-shielding, mutual shielding and shielding by
atomic and molecular hydrogen, and it is the first such model to include the
rare isotopologues C17O and 13C17O. We couple it to a simple chemical network
to analyse CO abundances in diffuse and translucent clouds, photon-dominated
regions, and circumstellar disks.
Results. The photodissociation rate in the unattenuated interstellar
radiation field is 2.6e-10 s^-1, 30% higher than currently adopted values.
Increasing the excitation temperature or the Doppler width can reduce the
photodissociation rates and the isotopic selectivity by as much as a factor of
three for temperatures above 100 K. The model reproduces column densities
observed towards diffuse clouds and PDRs, and it offers an explanation for both
the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The
photodissociation of C17O and 13C17O shows almost exactly the same depth
dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally
fractionated with respect to 16O. This supports the recent hypothesis that CO
photodissociation in the solar nebula is responsible for the anomalous 17O and
18O abundances in meteorites.Comment: Accepted by A&
Measurement of two-halo neutron transfer reaction p(Li,Li)t at 3 MeV
The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time
at an incident energy of 3 MeV delivered by the new ISAC-2 facility at
TRIUMF. An active target detector MAYA, build at GANIL, was used for the
measurement. The differential cross sectionshave been determined for
transitions to the \nuc{9}{Li} ground andthe first excited states in a wide
range of scattering angles. Multistep transfer calculations using different
\nuc{11}{Li} model wave functions, shows that wave functions with strong
correlations between the halo neutrons are the most successful in reproducing
the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter
Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit
We investigate the possibility of using arrays of closely spaced metal nanoparticles as plasmon waveguides for electromagnetic energy below the diffraction limit of light. Far-field spectroscopy on arrays of closely spaced 50 nm Au particles fabricated using electron beam lithography reveals the presence of near-field optical particle interactions that lead to shifts in the plasmon resonance frequencies for longitudinal and transverse excitations. We link this observation to a point-dipole model for energy transfer in plasmon waveguides and give an estimate of the expected group velocities and energy decay lengths for the fabricated structures. A near-field optical excitation and detection scheme for energy transport is proposed and demonstrated. The fabricated structures show a high propagation loss of about 3 dB / 15 nm which renders a direct experimental observation of energy transfer impossible. The nature of the loss and ways to decrease it by an order of magnitude are discussed. We also present finite-difference time-domain simulations on the energy transfer properties of plasmon waveguides
Three-dimensional Simulations of Disk Accretion to an Inclined Dipole: I. Magnetospheric Flow at Different Theta
We present results of fully three-dimensional MHD simulations of disk
accretion to a rotating magnetized star with its dipole moment inclined at an
angle Theta to the rotation axis of the disk. We observed that matter accretes
from the disk to a star in two or several streams depending on Theta. Streams
may precess around the star at small Theta. The inner regions of the disk are
warped. The warping is due to the tendency of matter to co-rotate with inclined
magnetosphere. The accreting matter brings positive angular momentum to the
(slowly rotating) star tending to spin it up. The corresponding torque N_z
depends only weakly on Theta. The angular momentum flux to the star is
transported predominantly by the magnetic field; the matter component
contributes < 1 % of the total flux. Results of simulations are important for
understanding the nature of classical T Tauri stars, cataclysmic variables, and
X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are
available at http://www.astro.cornell.edu/us-rus/inclined.ht
CO emission and variable CH and CH+ absorption towards HD34078: evidence for a nascent bow shock ?
The runaway star HD34078, initially selected to investigate small scale
structure in a foreground diffuse cloud has been shown to be surrounded by
highly excited H2. We first search for an association between the foreground
cloud and HD34078. Second, we extend previous investigations of temporal
absorption line variations (CH, CH+, H2) in order to better characterize them.
We have mapped the CO(2-1) emission at 12 arcsec resolution around HD34078's
position, using the 30 m IRAM antenna. The follow-up of CH and CH+ absorption
lines has been extended over 5 more years. In parallel, CH absorption towards
the reddened star Zeta Per have been monitored to check the homogeneity of our
measurements. Three more FUSE spectra have been obtained to search for N(H2)
variations. CO observations show a pronounced maximum near HD34078's position,
clearly indicating that the star and diffuse cloud are associated. The optical
spectra confirm the reality of strong, rapid and correlated CH and CH+
fluctuations. On the other hand, N(H2, J=0) has varied by less than 5 % over 4
years. We also discard N(CH) variations towards Zeta Per at scales less than 20
AU. Observational constraints from this work and from 24 micron dust emission
appear to be consistent with H2 excitation but inconsistent with steady-state
bow shock models and rather suggest that the shell of compressed gas
surrounding HD34078, is seen at an early stage of the interaction. The CH and
CH+ time variations as well as their large abundances are likely due to
chemical structure in the shocked gas layer located at the stellar wind/ambient
cloud interface. Finally, the lack of variations for both N(H2, J=0) towards
HD34078 and N(CH) towards Zeta Per suggests that quiescent molecular gas is not
subject to pronounced small-scale structure.Comment: 19 pages, 15 figures, accepted for publication in A&
- …
